These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21603066)

  • 1. Solution of the nonlinear elasticity imaging inverse problem: The incompressible case.
    Goenezen S; Barbone P; Oberai AA
    Comput Methods Appl Mech Eng; 2011 Mar; 200(13-16):1406-1420. PubMed ID: 21603066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part II - Nonlinear Examples.
    Almeida ES; Spilker RL
    Comput Methods Biomech Biomed Engin; 1998; 1(2):151-170. PubMed ID: 11264802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparsity regularization in dynamic elastography.
    Honarvar M; Sahebjavaher RS; Salcudean SE; Rohling R
    Phys Med Biol; 2012 Oct; 57(19):5909-27. PubMed ID: 22955065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified three-dimensional finite elements for large strain analysis of compressible and nearly incompressible solids.
    Pagani A; Chiaia P; Filippi M; Cinefra M
    Mech Adv Mat Struct; 2024; 31(1):117-137. PubMed ID: 38235485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations.
    Almeida ES; Spilker RL
    Comput Methods Biomech Biomed Engin; 1997; 1(1):25-46. PubMed ID: 11264795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
    Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE
    Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.
    Gültekin O; Rodoplu B; Dal H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjoint multi-start-based estimation of cardiac hyperelastic material parameters using shear data.
    Balaban G; Alnæs MS; Sundnes J; Rognes ME
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1509-1521. PubMed ID: 27008196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation.
    Wu T; Hung AP; Hunter P; Mithraratne K
    Comput Methods Biomech Biomed Engin; 2015; 18(5):477-84. PubMed ID: 23895255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.
    Thorvaldsen T; Osnes H; Sundnes J
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Unified Determinant-Preserving Formulation for Compressible/Incompressible Finite Viscoelasticity.
    Wijaya IPA; Lopez-Pamies O; Masud A
    J Mech Phys Solids; 2023 Aug; 177():. PubMed ID: 37724292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The geometry of discombinations and its applications to semi-inverse problems in anelasticity.
    Yavari A; Goriely A
    Proc Math Phys Eng Sci; 2014 Sep; 470(2169):20140403. PubMed ID: 25197257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling.
    Peirlinck M; De Beule M; Segers P; Rebelo N
    J Mech Behav Biomed Mater; 2018 Sep; 85():124-133. PubMed ID: 29886406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient algorithm for the inverse problem in elasticity imaging by means of variational r-adaption.
    Arnold A; Bruhns OT; Mosler J
    Phys Med Biol; 2011 Jul; 56(14):4239-65. PubMed ID: 21701052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models.
    Sun W; Chaikof EL; Levenston ME
    J Biomech Eng; 2008 Dec; 130(6):061003. PubMed ID: 19045532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.