BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 216033)

  • 21. Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of Arabidopsis thaliana.
    Zaffagnini M; Fermani S; Calvaresi M; Orrù R; Iommarini L; Sparla F; Falini G; Bottoni A; Trost P
    Antioxid Redox Signal; 2016 Mar; 24(9):502-17. PubMed ID: 26650776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of human CuZn superoxide dismutase during exposure to superoxide radical and hydrogen peroxide.
    Sinet PM; Garber P; Jérome H
    Bull Eur Physiopathol Respir; 1981; 17 Suppl():91-9. PubMed ID: 6265012
    [No Abstract]   [Full Text] [Related]  

  • 23. Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis.
    Jackett PS; Aber VR; Lowrie DB
    J Gen Microbiol; 1978 Jan; 104(1):37-45. PubMed ID: 24084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in cardiac contractile proteins due to oxygen free radicals.
    Suzuki S; Kaneko M; Chapman DC; Dhalla NS
    Biochim Biophys Acta; 1991 May; 1074(1):95-100. PubMed ID: 1646033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Experiments on the inhibition of glycolytic enzymes by diisopropylfluroophosphate].
    Domagk GF; Sörensen N; Zech R
    Hoppe Seylers Z Physiol Chem; 1967 Apr; 348(4):381-4. PubMed ID: 4231654
    [No Abstract]   [Full Text] [Related]  

  • 26. Mechanism of hydrogen peroxide-induced Cu,Zn-superoxide dismutase-centered radical formation as explored by immuno-spin trapping: the role of copper- and carbonate radical anion-mediated oxidations.
    Ramirez DC; Gomez Mejiba SE; Mason RP
    Free Radic Biol Med; 2005 Jan; 38(2):201-14. PubMed ID: 15607903
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitric oxide protects Cu,Zn-superoxide dismutase from hydrogen peroxide-induced inactivation.
    Kim YS; Han S
    FEBS Lett; 2000 Aug; 479(1-2):25-8. PubMed ID: 10940382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The reaction of sulfhydryl groups of dehydrogenases with iodine.
    Móra S; Hüvös P; Libor S; Elodi P
    Acta Biochim Biophys Acad Sci Hung; 1969; 4(2):151-9. PubMed ID: 5346701
    [No Abstract]   [Full Text] [Related]  

  • 29. Mechanism of peroxide-inactivation of the sulphydryl enzyme glyceraldehyde-3-phosphate dehydrogenase.
    Little C; O'Brien PJ
    Eur J Biochem; 1969 Oct; 10(3):533-8. PubMed ID: 5348077
    [No Abstract]   [Full Text] [Related]  

  • 30. Singlet oxygen: a potential culprit in myocardial injury?
    Kukreja RC; Jesse RL; Hess ML
    Mol Cell Biochem; 1992 Apr; 111(1-2):17-24. PubMed ID: 1317003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of free radicals and oxidants on myocardial cellular injury.
    Mukhopadhyay A; Steinberg N; Das DK
    Clin Physiol Biochem; 1989; 7(6):278-85. PubMed ID: 2560689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced oxidation of NAD(P)H by oxidants in the presence of dehydrogenases but no evidence for a superoxide-propagated chain oxidation of the bound coenzymes.
    Petrat F; Bramey T; Kirsch M; Kerkweg U; De Groot H
    Free Radic Res; 2006 Aug; 40(8):857-63. PubMed ID: 17015264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen peroxide induces association between glyceraldehyde 3-phosphate dehydrogenase and phospholipase D2 to facilitate phospholipase D2 activation in PC12 cells.
    Kim JH; Lee S; Park JB; Lee SD; Kim JH; Ha SH; Hasumi K; Endo A; Suh PG; Ryu SH
    J Neurochem; 2003 Jun; 85(5):1228-36. PubMed ID: 12753082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation of glyceraldehyde-3-phosphate dehydrogenase and yeast alcohol dehydrogenase by arene oxides.
    Bruice PY; Wilson SC; Bruice TC
    Biochemistry; 1978 May; 17(9):1662-9. PubMed ID: 26383
    [No Abstract]   [Full Text] [Related]  

  • 35. Potentiation of oxidative damage to proteins by ultraviolet-A and protection by antioxidants.
    Hu ML; Tappel AL
    Photochem Photobiol; 1992 Sep; 56(3):357-63. PubMed ID: 1438570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation and repair of papain sulfenic acid.
    Lin WS; Armstrong DA; Gaucher GM
    Can J Biochem; 1975 Mar; 53(3):298-307. PubMed ID: 1125817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide reactivates nitric oxide-inhibited catalase.
    Kim YS; Han S
    Biol Chem; 2000 Dec; 381(12):1269-71. PubMed ID: 11209763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidation of NADH by vanadium: kinetics, effects of ligands and role of H2O2 or O2.
    Stankiewicz PJ; Stern A; Davison AJ
    Arch Biochem Biophys; 1991 May; 287(1):8-17. PubMed ID: 1654805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Saccharomyces cerevisiae, the effect of H2O2 on ATP, but not on glyceraldehyde-3-phosphate dehydrogenase, depends on the glucose concentration.
    Osório H; Moradas-Ferreira P; Günther Sillero MA; Sillero A
    Arch Microbiol; 2004 Mar; 181(3):231-6. PubMed ID: 14735298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superoxide and hydrogen peroxide-dependent lipid peroxidation in intact and triton-dispersed erythrocyte membranes.
    Girotti AW; Thomas JP
    Biochem Biophys Res Commun; 1984 Jan; 118(2):474-80. PubMed ID: 6322749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.