These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2160367)

  • 1. Range and stability of cell fate determination in isolated sea urchin blastomeres.
    Livingston BT; Wilt FH
    Development; 1990 Mar; 108(3):403-10. PubMed ID: 2160367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of different vegetal cells with mesomeres during early stages of sea urchin development.
    Khaner O; Wilt F
    Development; 1991 Jul; 112(3):881-90. PubMed ID: 1935693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres.
    Khaner O; Wilt F
    Development; 1990 Jul; 109(3):625-34. PubMed ID: 2401215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
    Wikramanayake AH; Brandhorst BP; Klein WH
    Development; 1995 May; 121(5):1497-505. PubMed ID: 7789279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractionation of Micromeres, Mesomeres, and Macromeres of 16-cell Stage Sea Urchin Embryos by Elutriation*: (sea urchin embryo/blastomere/elutriation/micromere/mesomere/macromere).
    Yamaguchi M; Kinoshita T; Ohba Y
    Dev Growth Differ; 1994 Aug; 36(4):381-387. PubMed ID: 37281624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos.
    Livingston BT; Wilt FH
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3669-73. PubMed ID: 2726745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos.
    Henry JJ; Amemiya S; Wray GA; Raff RA
    Dev Biol; 1989 Nov; 136(1):140-53. PubMed ID: 2806717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants.
    Minokawa T; Amemiya S
    Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A complete second gut induced by transplanted micromeres in the sea urchin embryo.
    Ransick A; Davidson EH
    Science; 1993 Feb; 259(5098):1134-8. PubMed ID: 8438164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete regulation of development throughout metamorphosis of sea urchin embryos devoid of macromeres.
    Amemiya S
    Dev Growth Differ; 1996 Oct; 38(5):465-476. PubMed ID: 37281784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromeres are required for normal vegetal plate specification in sea urchin embryos.
    Ransick A; Davidson EH
    Development; 1995 Oct; 121(10):3215-22. PubMed ID: 7588056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos.
    Yazaki I; Tsurugaya T; Santella L; Chun JT; Amore G; Kusunoki S; Asada A; Togo T; Akasaka K
    Zygote; 2015 Jun; 23(3):426-46. PubMed ID: 24717667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo.
    Masui M; Kominami T
    Dev Growth Differ; 2001 Feb; 43(1):43-53. PubMed ID: 11148451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres.
    Iijima M; Ishizuka Y; Nakajima Y; Amemiya S; Minokawa T
    Dev Genes Evol; 2009 May; 219(5):235-47. PubMed ID: 19437036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Stereometric Analysis of Karyokinesis, Cytokinesis and Cell Arrangements during and following Fourth Cleavage Period in the Sea Urchin, Lytechinus variegatus: (sea urchin embryo/cell division patterns/stereo imaging/3-D reconstruction).
    Summers RG; Morrill JB; Leith A; Marko M; Piston DW; Stonebraker AT
    Dev Growth Differ; 1993 Feb; 35(1):41-57. PubMed ID: 37280928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone modifications accompanying the onset of developmental commitment.
    Chambers SA; Shaw BR
    Dev Biol; 1987 Dec; 124(2):523-31. PubMed ID: 3678612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.