These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21603682)

  • 1. Simulation of amino acid diffusion across water/hydrophobic interfaces.
    Martins-Costa MT; Ruiz-López MF
    Phys Chem Chem Phys; 2011 Jun; 13(24):11579-82. PubMed ID: 21603682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid capture by aqueous interfaces. Implications for biological uptake.
    Martins-Costa MT; Ruiz-Lopez MF
    J Phys Chem B; 2013 Oct; 117(41):12469-74. PubMed ID: 24093882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine in aqueous solution: solvation shells, interfacial water, and vibrational spectroscopy from ab initio molecular dynamics.
    Sun J; Bousquet D; Forbert H; Marx D
    J Chem Phys; 2010 Sep; 133(11):114508. PubMed ID: 20866146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic interactions with coarse-grained model for water.
    Egorov SA
    J Chem Phys; 2011 Jun; 134(23):234509. PubMed ID: 21702569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local and bulk hydration of zwitterionic glycine and its analogues through molecular simulations.
    White A; Jiang S
    J Phys Chem B; 2011 Feb; 115(4):660-7. PubMed ID: 21174438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt effects on water/hydrophobic liquid interfaces: a molecular dynamics study.
    Zhang C; Carloni P
    J Phys Condens Matter; 2012 Mar; 24(12):124109. PubMed ID: 22395223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of dynamical constraints imposed by water organization around a bio-hydrophobic interface.
    Russo D; Gonzalez MA; Pellegrini E; Combet J; Ollivier J; Teixeira J
    J Phys Chem B; 2013 Mar; 117(10):2829-36. PubMed ID: 23414252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces.
    Nikolic A; Baud S; Rauscher S; Pomès R
    Proteins; 2011 Jan; 79(1):1-22. PubMed ID: 20938982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of excess electron and one water molecule on relative stability of the canonical and zwitterionic tautomers of glycine.
    Haranczyk M; Gutowski M
    J Chem Phys; 2008 Mar; 128(12):125101. PubMed ID: 18376976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal stabilities of the microhydrated zwitterionic glycine: a kinetics and dynamics study.
    Tian SX; Sun X; Cao R; Yang J
    J Phys Chem A; 2009 Jan; 113(2):480-3. PubMed ID: 19086906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why are water-hydrophobic interfaces charged?
    Kudin KN; Car R
    J Am Chem Soc; 2008 Mar; 130(12):3915-9. PubMed ID: 18311970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution.
    Hu H; Elstner M; Hermans J
    Proteins; 2003 Feb; 50(3):451-63. PubMed ID: 12557187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of hydrophobic surfaces in altering water-mediated peptide-peptide interactions in an aqueous environment.
    Yoo S; Xantheas SS
    J Phys Chem A; 2011 Jun; 115(23):6088-92. PubMed ID: 21247205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photostability and solvation: photodynamics of microsolvated zwitterionic glycine.
    Oncák M; Lischka H; Slavícek P
    Phys Chem Chem Phys; 2010 May; 12(19):4906-14. PubMed ID: 20445898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces.
    Jamadagni SN; Godawat R; Garde S
    Langmuir; 2009 Nov; 25(22):13092-9. PubMed ID: 19492828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific interactions of ammonium functionalities in amino acids with aqueous fluoride and iodide.
    Mason PE; Heyda J; Fischer HE; Jungwirth P
    J Phys Chem B; 2010 Nov; 114(43):13853-60. PubMed ID: 20939557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration shell structure and dynamics of curium(III) in aqueous solution: first principles and empirical studies.
    Atta-Fynn R; Bylaska EJ; Schenter GK; de Jong WA
    J Phys Chem A; 2011 May; 115(18):4665-77. PubMed ID: 21500828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of glycine crystal-solution interface.
    Banerjee S; Briesen H
    J Chem Phys; 2009 Nov; 131(18):184705. PubMed ID: 19916621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion anomaly and dynamic transitions in the Bell-Lavis water model.
    Szortyka MM; Fiore CE; Henriques VB; Barbosa MC
    J Chem Phys; 2010 Sep; 133(10):104904. PubMed ID: 20849189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.