BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 21603684)

  • 21. Decomposition of nitrous oxide on Fe-doped boron nitride nanotubes: the ligand effect.
    Injan N; Sirijaraensre J; Limtrakul J
    Phys Chem Chem Phys; 2014 Nov; 16(42):23182-7. PubMed ID: 25254314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: the effect of surface curvature.
    Rimola A; Sodupe M
    Phys Chem Chem Phys; 2013 Aug; 15(31):13190-8. PubMed ID: 23824299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes.
    Ganji MD; Mirnejad A; Najafi A
    Sci Technol Adv Mater; 2010 Aug; 11(4):045001. PubMed ID: 27877350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes.
    Wu X; Yang JL; Zeng XC
    J Chem Phys; 2006 Jul; 125(4):44704. PubMed ID: 16942171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of boron nitride nanotubes and their polymer composites for improving mechanical performance.
    Zhou SJ; Ma CY; Meng YY; Su HF; Zhu Z; Deng SL; Xie SY
    Nanotechnology; 2012 Feb; 23(5):055708. PubMed ID: 22237013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA-mediated assembly of boron nitride nanotubes.
    Zhi C; Bando Y; Wang W; Tang C; Kuwahara H; Golberg D
    Chem Asian J; 2007 Dec; 2(12):1581-5. PubMed ID: 18041790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The non-covalent functionalisation of carbon nanotubes studied by density functional and semi-empirical molecular orbital methods including dispersion corrections.
    McNamara JP; Sharma R; Vincent MA; Hillier IH; Morgado CA
    Phys Chem Chem Phys; 2008 Jan; 10(1):128-35. PubMed ID: 18075691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxygen adsorption characteristics on hybrid carbon and boron-nitride nanotubes.
    Liu H; Turner CH
    J Comput Chem; 2014 May; 35(14):1058-63. PubMed ID: 24659221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical investigation of the divacancies in boron nitride nanotubes: properties and surface reactivity toward various adsorbates.
    Zhao JX; Ding YH
    J Chem Phys; 2009 Jul; 131(1):014706. PubMed ID: 19586116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions between polymers and single-walled boron nitride nanotubes: a molecular dynamics simulation approach.
    Nasrabadi AT; Foroutan M
    J Phys Chem B; 2010 Dec; 114(47):15429-36. PubMed ID: 21062092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic structures of organic molecule encapsulated BN nanotubes under transverse electric field.
    He W; Li Z; Yang J; Hou JG
    J Chem Phys; 2008 Jul; 129(2):024710. PubMed ID: 18624555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The nature of radiative transitions in o-doped boron nitride nanotubes.
    Gou G; Pan B; Shi L
    J Am Chem Soc; 2009 Apr; 131(13):4839-45. PubMed ID: 19278260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noncovalent functionalization of boron nitride nanotubes with poly(p-phenylene-ethynylene)s and polythiophene.
    Velayudham S; Lee CH; Xie M; Blair D; Bauman N; Yap YK; Green SA; Liu H
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):104-10. PubMed ID: 20356226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes.
    Wang W; Bando Y; Zhi C; Fu W; Wang E; Golberg D
    J Am Chem Soc; 2008 Jul; 130(26):8144-5. PubMed ID: 18540601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new generation of B(n)N(n) rings as a supplement to boron nitride tubes and cages.
    Monajjemi M; Boggs JE
    J Phys Chem A; 2013 Feb; 117(7):1670-84. PubMed ID: 23347207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel nanocomposites made of boron nitride nanotubes and a physical gel.
    Samanta SK; Gomathi A; Bhattacharya S; Rao CN
    Langmuir; 2010 Jul; 26(14):12230-6. PubMed ID: 20572640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding effects of molecular adsorption at a single-wall boron nitride nanotube interface from density functional theory calculations.
    Akdim B; Kim SN; Naik RR; Maruyama B; Pender MJ; Pachter R
    Nanotechnology; 2009 Sep; 20(35):355705. PubMed ID: 19671986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of Fe doping on adsorption of CO2/N2 within carbon nanotubes: a density functional theory study with dispersion corrections.
    Du AJ; Sun CH; Zhu ZH; Lu GQ; Rudolph V; Smith SC
    Nanotechnology; 2009 Sep; 20(37):375701. PubMed ID: 19706942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Field emission and strain engineering of electronic properties in boron nitride nanotubes.
    Ghassemi HM; Lee CH; Yap YK; Yassar RS
    Nanotechnology; 2012 Mar; 23(10):105702. PubMed ID: 22349128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transformation from chemisorption to physisorption with tube diameter and gas concentration: computational studies on NH3 adsorption in BN nanotubes.
    Li Y; Zhou Z; Zhao J
    J Chem Phys; 2007 Nov; 127(18):184705. PubMed ID: 18020656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.