BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21604251)

  • 1. Stereolithographic biomodelling to create tangible hard copies of the ethmoidal labyrinth air cells based on the visible human project.
    Kapakin S
    Folia Morphol (Warsz); 2011 Feb; 70(1):33-40. PubMed ID: 21604251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reproduction accuracy for stereolithographic model of the thyroid gland derived from the visible human dataset.
    Kapakin S; Demiryurek D
    Saudi Med J; 2009 Jul; 30(7):887-92. PubMed ID: 19618001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creating computer aided 3D model of spleen and kidney based on Visible Human Project.
    Aldur MM
    Saudi Med J; 2005 Jan; 26(1):51-6. PubMed ID: 15756353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education.
    Torres K; Staśkiewicz G; Śnieżyński M; Drop A; Maciejewski R
    Folia Morphol (Warsz); 2011 Feb; 70(1):1-4. PubMed ID: 21604245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of virtual reality and stereolithographic models in maxillo-facial surgical planning.
    Robiony M; Salvo I; Costa F; Zerman N; Bandera C; Filippi S; Felice M; Politi M
    J Craniofac Surg; 2008 Mar; 19(2):482-9. PubMed ID: 18362729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional reconstruction and rapid prototyping of femur bone using multiple digital X-rays.
    Maheshwaraa NU; Arumaikkannu G; Gowri S
    J Med Eng Technol; 2008; 32(1):30-9. PubMed ID: 18183518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional surface models of detailed lumbosacral structures reconstructed from the Visible Korean.
    Shin DS; Chung MS; Park JS; Park HS; Lee SB; Lee SH; Choi HN; Riemer M; Handels H; Lee JE; Jung W
    Ann Anat; 2011 Feb; 193(1):64-70. PubMed ID: 20951015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work.
    Robiony M; Salvo I; Costa F; Zerman N; Bazzocchi M; Toso F; Bandera C; Filippi S; Felice M; Politi M
    J Oral Maxillofac Surg; 2007 Jun; 65(6):1198-208. PubMed ID: 17517306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The paranasal sinuses: three-dimensional reconstruction, photo-realistic imaging, and virtual endoscopy.
    Kapakin S
    Folia Morphol (Warsz); 2016; 75(3):326-333. PubMed ID: 26916200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital image capture and rapid prototyping of the maxillofacial defect.
    Sabol JV; Grant GT; Liacouras P; Rouse S
    J Prosthodont; 2011 Jun; 20(4):310-4. PubMed ID: 21438958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explorable three-dimensional digital model of the female pelvis, pelvic contents, and perineum for anatomical education.
    Sergovich A; Johnson M; Wilson TD
    Anat Sci Educ; 2010; 3(3):127-33. PubMed ID: 20166225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New views of male pelvic anatomy: role of computer-generated 3D images.
    Venuti JM; Imielinska C; Molholt P
    Clin Anat; 2004 Apr; 17(3):261-71. PubMed ID: 15042576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of two 3D virtual computer reconstructions for comparison of cleft lip and palate to normal fetal microanatomy.
    Landes CA; Weichert F; Geis P; Helga F; Wagner M
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Mar; 288(3):248-62. PubMed ID: 16456872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An interactive three-dimensional virtual body structures system for anatomical training over the internet.
    Temkin B; Acosta E; Malvankar A; Vaidyanath S
    Clin Anat; 2006 Apr; 19(3):267-74. PubMed ID: 16506202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Web-based interactive 3D visualization as a tool for improved anatomy learning.
    Petersson H; Sinkvist D; Wang C; Smedby O
    Anat Sci Educ; 2009; 2(2):61-8. PubMed ID: 19363804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on the three-dimensional reconstruction and visualization of the anatomical structures of the anterior approach to the upper thoracic spine].
    Huang YX; Jin LZ; Chi YL; Zhang HZ
    Zhongguo Gu Shang; 2009 Dec; 22(12):927-9. PubMed ID: 20112579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The use of open source software in graphic anatomic reconstructions and in biomechanic simulations].
    Ciobanu O
    Rev Med Chir Soc Med Nat Iasi; 2009; 113(3):927-33. PubMed ID: 20191857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A head in virtual reality: development of a dynamic head and neck model.
    Nguyen N; Wilson TD
    Anat Sci Educ; 2009; 2(6):294-301. PubMed ID: 19890983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual human dissector as a learning tool for studying cross-sectional anatomy.
    Donnelly L; Patten D; White P; Finn G
    Med Teach; 2009 Jun; 31(6):553-5. PubMed ID: 19288305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming clinical imaging data for virtual reality learning objects.
    Trelease RB; Rosset A
    Anat Sci Educ; 2008; 1(2):50-5. PubMed ID: 19177381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.