These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Photoresponsive PEG-anthracene grafted hyaluronan as a controlled-delivery biomaterial. Wells LA; Furukawa S; Sheardown H Biomacromolecules; 2011 Apr; 12(4):923-32. PubMed ID: 21401018 [TBL] [Abstract][Full Text] [Related]
4. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. Chan AW; Neufeld RJ Biomaterials; 2009 Oct; 30(30):6119-29. PubMed ID: 19660810 [TBL] [Abstract][Full Text] [Related]
5. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro. Kuo CK; Ma PX J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of cyclic acetal based degradable hydrogels. Kaihara S; Matsumura S; Fisher JP Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640 [TBL] [Abstract][Full Text] [Related]
7. [Recent trends in drug delivery systems using biomaterials]. Kurisawa M; Yui N Nihon Rinsho; 1996 Jul; 54(7):2004-11. PubMed ID: 8741703 [TBL] [Abstract][Full Text] [Related]
10. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications. Sun H; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z Biomacromolecules; 2011 Jun; 12(6):1937-55. PubMed ID: 21469742 [TBL] [Abstract][Full Text] [Related]
11. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Andreopoulos FM; Persaud I Biomaterials; 2006 Apr; 27(11):2468-76. PubMed ID: 16321436 [TBL] [Abstract][Full Text] [Related]
12. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs. Yang Z; Zhang Y; Markland P; Yang VC J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782 [TBL] [Abstract][Full Text] [Related]
13. Study of gelling behavior of poly(vinyl alcohol)-methacrylate for potential utilizations in tissue replacement and drug delivery. Cavalieri F; Miano F; D'Antona P; Paradossi G Biomacromolecules; 2004; 5(6):2439-46. PubMed ID: 15530061 [TBL] [Abstract][Full Text] [Related]
14. Design of polyphosphazene hydrogels with improved structural properties by use of star-shaped multithiol crosslinkers. Potta T; Chun C; Song SC Macromol Biosci; 2011 May; 11(5):689-99. PubMed ID: 21448917 [TBL] [Abstract][Full Text] [Related]
15. Surface-Selective Grafting of Crosslinking Layers on Hydrogel Surfaces via Two Different Mechanisms of Photopolymerization for Site-Controllable Release. Zhang J; Nie J; Zhu X Macromol Rapid Commun; 2018 Oct; 39(20):e1800144. PubMed ID: 29806085 [TBL] [Abstract][Full Text] [Related]
16. Hydrogel nanoparticles in drug delivery. Hamidi M; Azadi A; Rafiei P Adv Drug Deliv Rev; 2008 Dec; 60(15):1638-49. PubMed ID: 18840488 [TBL] [Abstract][Full Text] [Related]
17. Dynamic covalent bond based on reversible photo [4 + 4] cycloaddition of anthracene for construction of double-dynamic polymers. Xu JF; Chen YZ; Wu LZ; Tung CH; Yang QZ Org Lett; 2013 Dec; 15(24):6148-51. PubMed ID: 24237380 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, characterization, and biocompatibility of novel injectable, biodegradable, and in situ crosslinkable polycarbonate-based macromers. Sharifi S; Imani M; Mirzadeh H; Atai M; Ziaee F; Bakhshi R J Biomed Mater Res A; 2009 Sep; 90(3):830-43. PubMed ID: 18615464 [TBL] [Abstract][Full Text] [Related]