BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21604676)

  • 1. Amplified on-chip fluorescence detection of DNA hybridization by surface-initiated enzymatic polymerization.
    Tjong V; Yu H; Hucknall A; Rangarajan S; Chilkoti A
    Anal Chem; 2011 Jul; 83(13):5153-9. PubMed ID: 21604676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct fluorescence detection of RNA on microarrays by surface-initiated enzymatic polymerization.
    Tjong V; Yu H; Hucknall A; Chilkoti A
    Anal Chem; 2013 Jan; 85(1):426-33. PubMed ID: 23194025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization.
    Wan Y; Wang P; Su Y; Zhu X; Yang S; Lu J; Gao J; Fan C; Huang Q
    Biosens Bioelectron; 2014 May; 55():231-6. PubMed ID: 24384265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A surface-initiated enzymatic polymerization strategy for electrochemical DNA sensors.
    Wan Y; Xu H; Su Y; Zhu X; Song S; Fan C
    Biosens Bioelectron; 2013 Mar; 41():526-31. PubMed ID: 23069356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of copper nanoparticles on poly(thymine) through surface-initiated enzymatic polymerization and its application for DNA detection.
    Hu W; Ning Y; Kong J; Zhang X
    Analyst; 2015 Aug; 140(16):5678-84. PubMed ID: 26147187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of lateral spacing on enzymatic on-chip DNA polymerization.
    Kim ES; Hong BJ; Park CW; Kim Y; Park JW; Choi KY
    Biosens Bioelectron; 2011 Jan; 26(5):2566-73. PubMed ID: 21146395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascade signal amplification for electrochemical immunosensing by integrating biobarcode probes, surface-initiated enzymatic polymerization and silver nanoparticle deposition.
    Lin D; Mei C; Liu A; Jin H; Wang S; Wang J
    Biosens Bioelectron; 2015 Apr; 66():177-83. PubMed ID: 25460899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-less fluorescence-based method to detect hybridization with applications to DNA micro-array.
    Niu S; Singh G; Saraf RF
    Biosens Bioelectron; 2007 Dec; 23(5):714-20. PubMed ID: 17888648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfaces for tuning of oligonucleotide biosensing selectivity based on surface-initiated atom transfer radical polymerization on glass and silicon substrates.
    Wong AK; Krull UJ
    Anal Chim Acta; 2009 Apr; 639(1-2):1-12. PubMed ID: 19345752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic study of a DNA brush synthesized in situ by surface initiated enzymatic polymerization.
    Khan MN; Tjong V; Chilkoti A; Zharnikov M
    J Phys Chem B; 2013 Aug; 117(34):9929-38. PubMed ID: 23899324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of different labeling methods for the production of labeled target DNA for microarray hybridization.
    Franke-Whittle IH; Klammer SH; Mayrhofer S; Insam H
    J Microbiol Methods; 2006 Apr; 65(1):117-26. PubMed ID: 16043246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free and real-time sequence specific DNA detection based on supramolecular self-assembly.
    Tang Y; Achyuthan KE; Whitten DG
    Langmuir; 2010 May; 26(9):6832-7. PubMed ID: 20030336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays.
    Lee HJ; Li Y; Wark AW; Corn RM
    Anal Chem; 2005 Aug; 77(16):5096-100. PubMed ID: 16097744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of base-modified duplex-stabilizing deoxynucleoside 5'-triphosphates to enhance the hybridization properties of primers and probes in detection polymerase chain reaction.
    Kutyavin IV
    Biochemistry; 2008 Dec; 47(51):13666-73. PubMed ID: 19046073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA.
    Gaylord BS; Heeger AJ; Bazan GC
    J Am Chem Soc; 2003 Jan; 125(4):896-900. PubMed ID: 12537486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of PCR-derived, single-stranded DNA probes suitable for in situ hybridization.
    Hannon K; Johnstone E; Craft LS; Little SP; Smith CK; Heiman ML; Santerre RF
    Anal Biochem; 1993 Aug; 212(2):421-7. PubMed ID: 8214583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide.
    Wu C; Zhou Y; Miao X; Ling L
    Analyst; 2011 May; 136(10):2106-10. PubMed ID: 21442091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical detection of DNA and proteins with cationic polythiophenes.
    Ho HA; Najari A; Leclerc M
    Acc Chem Res; 2008 Feb; 41(2):168-78. PubMed ID: 18198841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple method of detecting amplified DNA with immobilized probes on microtiter wells.
    Kawai S; Maekawajiri S; Yamane A
    Anal Biochem; 1993 Feb; 209(1):63-9. PubMed ID: 8465963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence resonance energy transfer (FRET) using ssDNA binding fluorescent dye.
    Orpana AK
    Biomol Eng; 2004 Apr; 21(2):45-50. PubMed ID: 15113557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.