BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21604764)

  • 1. Acute hypertriglyceridemia promotes intestinal lymphatic lipid and drug transport: a positive feedback mechanism in lipid and drug absorption.
    Trevaskis NL; Charman WN; Porter CJ
    Mol Pharm; 2011 Aug; 8(4):1132-9. PubMed ID: 21604764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lymph lipid precursor pool is a key determinant of intestinal lymphatic drug transport.
    Trevaskis NL; Porter CJ; Charman WN
    J Pharmacol Exp Ther; 2006 Feb; 316(2):881-91. PubMed ID: 16249368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36.
    Hsieh J; Longuet C; Maida A; Bahrami J; Xu E; Baker CL; Brubaker PL; Drucker DJ; Adeli K
    Gastroenterology; 2009 Sep; 137(3):997-1005, 1005.e1-4. PubMed ID: 19482026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute-on-chronic effects of fatty acids on intestinal triacylglycerol-rich lipoprotein metabolism.
    Black IL; Roche HM; Tully AM; Gibney MJ
    Br J Nutr; 2002 Dec; 88(6):661-9. PubMed ID: 12493088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lymphatic transport of halofantrine in the triple-cannulated anesthetized rat model: effect of lipid vehicle dispersion.
    Porter CJ; Charman SA; Charman WN
    J Pharm Sci; 1996 Apr; 85(4):351-6. PubMed ID: 8901067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The lipid metabolism of the small intestine and its correlation to the lipid and lipoprotein metabolism of the total organism].
    Gangl A
    Acta Med Austriaca Suppl; 1975; 2():1-49. PubMed ID: 1065179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal lymphatic transport of halofantrine in rats assessed using a chylomicron flow blocking approach: the influence of polysorbate 60 and 80.
    Lind ML; Jacobsen J; Holm R; Müllertz A
    Eur J Pharm Sci; 2008 Oct; 35(3):211-8. PubMed ID: 18675904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An examination of the interplay between enterocyte-based metabolism and lymphatic drug transport in the rat.
    Trevaskis NL; Porter CJ; Charman WN
    Drug Metab Dispos; 2006 May; 34(5):729-33. PubMed ID: 16467133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs.
    Dahan A; Hoffman A
    Eur J Pharm Sci; 2005 Mar; 24(4):381-8. PubMed ID: 15734305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lymphatic transport of halofantrine in the conscious rat when administered as either the free base or the hydrochloride salt: effect of lipid class and lipid vehicle dispersion.
    Porter CJ; Charman SA; Humberstone AJ; Charman WN
    J Pharm Sci; 1996 Apr; 85(4):357-61. PubMed ID: 8901068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake of lipophilic drugs by plasma derived isolated chylomicrons: linear correlation with intestinal lymphatic bioavailability.
    Gershkovich P; Hoffman A
    Eur J Pharm Sci; 2005 Dec; 26(5):394-404. PubMed ID: 16140514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal triglycerides are derived from both endogenous and exogenous sources.
    Shiau YF; Popper DA; Reed M; Umstetter C; Capuzzi D; Levine GM
    Am J Physiol; 1985 Feb; 248(2 Pt 1):G164-9. PubMed ID: 3970197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of lymphatic transport of puerarin in unconscious lymph duct-cannulated rats after administration in microemulsion drug delivery systems.
    Wu H; Zhou A; Lu C; Wang L
    Eur J Pharm Sci; 2011 Mar; 42(4):348-53. PubMed ID: 21216284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of intestinal lymphatic transport on the systemic exposure and brain deposition of a novel highly lipophilic compound with structural similarity to cholesterol.
    Caliph SM; Faassen FW; Porter CJ
    J Pharm Pharmacol; 2014 Oct; 66(10):1377-87. PubMed ID: 24821499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered triglyceride-rich lipoprotein production in Zucker diabetic fatty rats.
    Chirieac DV; Collins HL; Cianci J; Sparks JD; Sparks CE
    Am J Physiol Endocrinol Metab; 2004 Jul; 287(1):E42-9. PubMed ID: 14970003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders.
    Demignot S; Beilstein F; Morel E
    Biochimie; 2014 Jan; 96():48-55. PubMed ID: 23871915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triglycerides and gallstone formation.
    Smelt AH
    Clin Chim Acta; 2010 Nov; 411(21-22):1625-31. PubMed ID: 20699090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal lipoprotein formation: effect of cholchicine.
    Glickman RM; Perrotto JL; Kirsch K
    Gastroenterology; 1976 Mar; 70(3):347-52. PubMed ID: 765186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats.
    Caliph SM; Charman WN; Porter CJ
    J Pharm Sci; 2000 Aug; 89(8):1073-84. PubMed ID: 10906731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Very low density lipoproteins in intestinal lymph: role in triglyceride and cholesterol transport during fat absorption.
    Ockner RK; Hughes FB; Isselbacher KJ
    J Clin Invest; 1969 Dec; 48(12):2367-73. PubMed ID: 5355348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.