These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21604813)

  • 1. Effects of cooking on the cell walls (dietary fiber) of 'Scarlet Warren' winter squash ( Cucurbita maxima ) studied by polysaccharide linkage analysis and solid-state (13)C NMR.
    Ratnayake RM; Sims IM; Newman RH; Melton LD
    J Agric Food Chem; 2011 Jul; 59(13):7186-93. PubMed ID: 21604813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cultivar, cooking, and storage on cell-wall polysaccharide composition of winter squash (Cucurbita maxima).
    Ratnayake RM; Melton LD; Hurst PL
    J Agric Food Chem; 2003 Mar; 51(7):1904-13. PubMed ID: 12643650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    J Exp Bot; 2004 Mar; 55(397):571-83. PubMed ID: 14966211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.
    Zykwinska A; Thibault JF; Ralet MC
    J Exp Bot; 2007; 58(7):1795-802. PubMed ID: 17383990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state 13C NMR study of the mobility of polysaccharides in the cell walls of two apple cultivars of different firmness.
    Ng JK; Zujovic ZD; Smith BG; Johnston JW; Schröder R; Melton LD
    Carbohydr Res; 2014 Mar; 386():1-6. PubMed ID: 24423413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysaccharide composition of raw and cooked chayote (Sechium edule Sw.) fruits and tuberous roots.
    Shiga TM; Peroni-Okita FH; Carpita NC; Lajolo FM; Cordenunsi BR
    Carbohydr Polym; 2015 Oct; 130():155-65. PubMed ID: 26076612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition of plant cell walls.
    Heredia A; Jiménez A; Guillén R
    Z Lebensm Unters Forsch; 1995; 200(1):24-31. PubMed ID: 7732730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of cell wall polysaccharides from the medicinal plant Panax notoginseng.
    Zhu Y; Pettolino F; Mau SL; Bacic A
    Phytochemistry; 2005 May; 66(9):1067-76. PubMed ID: 15896377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles.
    Chen D; Harris PJ; Sims IM; Zujovic Z; Melton LD
    BMC Plant Biol; 2017 Jun; 17(1):104. PubMed ID: 28619057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional (13)C solid-state nuclear magnetic resonance spectroscopy.
    Wang T; Salazar A; Zabotina OA; Hong M
    Biochemistry; 2014 May; 53(17):2840-54. PubMed ID: 24720372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using solid-state ¹³C NMR spectroscopy to study the molecular organisation of primary plant cell walls.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    Methods Mol Biol; 2011; 715():179-96. PubMed ID: 21222085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in collenchyma cell-wall polysaccharides in celery (Apium graveolens L.) petioles.
    Chen D; Melton LD; Zujovic Z; Harris PJ
    BMC Plant Biol; 2019 Feb; 19(1):81. PubMed ID: 30782133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods.
    Jin Z; Katsumata KS; Lam TB; Iiyama K
    Biopolymers; 2006 Oct; 83(2):103-10. PubMed ID: 16673388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Celery (Apium graveolens) parenchyma cell walls: cell walls with minimal xyloglucan.
    Thimm JC; Burritt DJ; Sims IM; Newman RH; Ducker WA; Melton LD
    Physiol Plant; 2002 Oct; 116(2):164-171. PubMed ID: 12354192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.
    White PB; Wang T; Park YB; Cosgrove DJ; Hong M
    J Am Chem Soc; 2014 Jul; 136(29):10399-409. PubMed ID: 24984197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative prediction of cell wall polysaccharide composition in grape (Vitis vinifera L.) and apple (Malus domestica) skins from acid hydrolysis monosaccharide profiles.
    Arnous A; Meyer AS
    J Agric Food Chem; 2009 May; 57(9):3611-9. PubMed ID: 19371033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    Biomacromolecules; 2009 Nov; 10(11):2961-7. PubMed ID: 19817435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation and mobility of the arabinan and galactan side-chains of pectin.
    Ha MA; Viëtor RJ; Jardine GD; Apperley DC; Jarvis MC
    Phytochemistry; 2005 Aug; 66(15):1817-24. PubMed ID: 16019042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits.
    Habibi Y; Heyraud A; Mahrouz M; Vignon MR
    Carbohydr Res; 2004 Apr; 339(6):1119-27. PubMed ID: 15063200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber: composition, structures, and functional properties.
    Sims IM; Monro JA
    Adv Food Nutr Res; 2013; 68():81-99. PubMed ID: 23394983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.