These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 21605378)
21. A transcriptomic view of the proteome variability of newborn and adult Bothrops jararaca snake venoms. Zelanis A; Andrade-Silva D; Rocha MM; Furtado MF; Serrano SM; Junqueira-de-Azevedo IL; Ho PL PLoS Negl Trop Dis; 2012; 6(3):e1554. PubMed ID: 22428077 [TBL] [Abstract][Full Text] [Related]
22. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea). Pahari S; Mackessy SP; Kini RM BMC Mol Biol; 2007 Dec; 8():115. PubMed ID: 18096037 [TBL] [Abstract][Full Text] [Related]
23. Sequence Divergence in Venom Genes Within and Between Montane Pitviper (Viperidae: Crotalinae: Cerrophidion) Species is Driven by Mutation-Drift Equilibrium. Rosales-García RA; Rautsaw RM; Hofmann EP; Grünwald CI; Franz-Chavez H; Ahumada-Carrillo IT; Ramirez-Chaparro R; de la Torre-Loranca MA; Strickland JL; Mason AJ; Holding ML; Borja M; Castañeda-Gaytan G; Myers EA; Sasa M; Rokyta DR; Parkinson CL J Mol Evol; 2023 Aug; 91(4):514-535. PubMed ID: 37269364 [TBL] [Abstract][Full Text] [Related]
24. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. Alape-Girón A; Sanz L; Escolano J; Flores-Díaz M; Madrigal M; Sasa M; Calvete JJ J Proteome Res; 2008 Aug; 7(8):3556-71. PubMed ID: 18557640 [TBL] [Abstract][Full Text] [Related]
25. Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the Almeida DD; Viala VL; Nachtigall PG; Broe M; Gibbs HL; Serrano SMT; Moura-da-Silva AM; Ho PL; Nishiyama-Jr MY; Junqueira-de-Azevedo ILM Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972420 [TBL] [Abstract][Full Text] [Related]
26. Snake Venom Gland Organoids. Post Y; Puschhof J; Beumer J; Kerkkamp HM; de Bakker MAG; Slagboom J; de Barbanson B; Wevers NR; Spijkers XM; Olivier T; Kazandjian TD; Ainsworth S; Iglesias CL; van de Wetering WJ; Heinz MC; van Ineveld RL; van Kleef RGDM; Begthel H; Korving J; Bar-Ephraim YE; Getreuer W; Rios AC; Westerink RHS; Snippert HJG; van Oudenaarden A; Peters PJ; Vonk FJ; Kool J; Richardson MK; Casewell NR; Clevers H Cell; 2020 Jan; 180(2):233-247.e21. PubMed ID: 31978343 [TBL] [Abstract][Full Text] [Related]
28. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Brahma RK; McCleary RJ; Kini RM; Doley R Toxicon; 2015 Jan; 93():1-10. PubMed ID: 25448392 [TBL] [Abstract][Full Text] [Related]
29. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus. Corrêa-Netto C; Junqueira-de-Azevedo Ide L; Silva DA; Ho PL; Leitão-de-Araújo M; Alves ML; Sanz L; Foguel D; Zingali RB; Calvete JJ J Proteomics; 2011 Aug; 74(9):1795-809. PubMed ID: 21515432 [TBL] [Abstract][Full Text] [Related]
30. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Fry BG; Scheib H; van der Weerd L; Young B; McNaughtan J; Ramjan SF; Vidal N; Poelmann RE; Norman JA Mol Cell Proteomics; 2008 Feb; 7(2):215-46. PubMed ID: 17855442 [TBL] [Abstract][Full Text] [Related]
32. Integrated Venomics and Venom Gland Transcriptome Analysis of Juvenile and Adult Mexican Rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus Revealed miRNA-modulated Ontogenetic Shifts. Durban J; Sanz L; Trevisan-Silva D; Neri-Castro E; Alagón A; Calvete JJ J Proteome Res; 2017 Sep; 16(9):3370-3390. PubMed ID: 28731347 [TBL] [Abstract][Full Text] [Related]
33. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu). Cardoso KC; Da Silva MJ; Costa GG; Torres TT; Del Bem LE; Vidal RO; Menossi M; Hyslop S BMC Genomics; 2010 Oct; 11():605. PubMed ID: 20977763 [TBL] [Abstract][Full Text] [Related]
34. The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms. Ainsworth S; Petras D; Engmark M; Süssmuth RD; Whiteley G; Albulescu LO; Kazandjian TD; Wagstaff SC; Rowley P; Wüster W; Dorrestein PC; Arias AS; Gutiérrez JM; Harrison RA; Casewell NR; Calvete JJ J Proteomics; 2018 Feb; 172():173-189. PubMed ID: 28843532 [TBL] [Abstract][Full Text] [Related]
35. Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms. Rokyta DR; Margres MJ; Calvin K G3 (Bethesda); 2015 Sep; 5(11):2375-82. PubMed ID: 26358130 [TBL] [Abstract][Full Text] [Related]
36. RNA-seq and high-definition mass spectrometry reveal the complex and divergent venoms of two rear-fanged colubrid snakes. McGivern JJ; Wray KP; Margres MJ; Couch ME; Mackessy SP; Rokyta DR BMC Genomics; 2014 Dec; 15(1):1061. PubMed ID: 25476704 [TBL] [Abstract][Full Text] [Related]
37. Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. Sanz L; Escolano J; Ferretti M; Biscoglio MJ; Rivera E; Crescenti EJ; Angulo Y; Lomonte B; Gutiérrez JM; Calvete JJ J Proteomics; 2008 Apr; 71(1):46-60. PubMed ID: 18541473 [TBL] [Abstract][Full Text] [Related]
38. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. Rokyta DR; Wray KP; Lemmon AR; Lemmon EM; Caudle SB Toxicon; 2011 Apr; 57(5):657-71. PubMed ID: 21255598 [TBL] [Abstract][Full Text] [Related]
39. Discovery of toxin-encoding genes from the false viper Macropisthodon rudis, a rear-fanged snake, by transcriptome analysis of venom gland. Zhang Z; Zhang X; Hu T; Zhou W; Cui Q; Tian J; Zheng Y; Fan Q Toxicon; 2015 Nov; 106():72-8. PubMed ID: 26403866 [TBL] [Abstract][Full Text] [Related]
40. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. Calvete JJ; Sanz L; Cid P; de la Torre P; Flores-Díaz M; Dos Santos MC; Borges A; Bremo A; Angulo Y; Lomonte B; Alape-Girón A; Gutiérrez JM J Proteome Res; 2010 Jan; 9(1):528-44. PubMed ID: 19863078 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]