BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21605617)

  • 1. An assessment of the impact of physico-chemical and biochemical characteristics on the human kinetic adjustment factor for systemic toxicants.
    Valcke M; Krishnan K
    Toxicology; 2011 Aug; 286(1-3):36-47. PubMed ID: 21605617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the impact of the exposure route on the human kinetic adjustment factor.
    Valcke M; Krishnan K
    Regul Toxicol Pharmacol; 2011 Mar; 59(2):258-69. PubMed ID: 20969910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the impact of child/adult differences in hepatic first-pass effect on the human kinetic adjustment factor for ingested toxicants.
    Valcke M; Krishnan K
    Regul Toxicol Pharmacol; 2013 Feb; 65(1):126-34. PubMed ID: 23200794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the impact of the duration and intensity of inhalation exposure on the magnitude of the variability of internal dose metrics in children and adults.
    Valcke M; Krishnan K
    Inhal Toxicol; 2011 Dec; 23(14):863-77. PubMed ID: 22084919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants.
    Valcke M; Krishnan K
    J Appl Toxicol; 2014 Mar; 34(3):227-40. PubMed ID: 24038072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of interindividual pharmacokinetic variability factor for inhaled volatile organic chemicals using a probability-bounds approach.
    Nong A; Krishnan K
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):93-101. PubMed ID: 17367907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels: a case study with toluene.
    Nong A; McCarver DG; Hines RN; Krishnan K
    Toxicol Appl Pharmacol; 2006 Jul; 214(1):78-87. PubMed ID: 16464483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological-model-based derivation of the adult and child pharmacokinetic intraspecies uncertainty factors for volatile organic compounds.
    Pelekis M; Gephart LA; Lerman SE
    Regul Toxicol Pharmacol; 2001 Feb; 33(1):12-20. PubMed ID: 11259175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing human variability in kinetics for exposures to multiple environmental chemicals: a physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, and m-xylene.
    Valcke M; Haddad S
    J Toxicol Environ Health A; 2015; 78(7):409-31. PubMed ID: 25785556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism, variability and risk assessment.
    Dorne JL
    Toxicology; 2010 Feb; 268(3):156-64. PubMed ID: 19932147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the Human Kinetic Adjustment Factor for Inhaled Volatile Organic Chemicals: Whole Population Approach versus Distinct Subpopulation Approach.
    Valcke M; Nong A; Krishnan K
    J Toxicol; 2012; 2012():404329. PubMed ID: 22523487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches for evaluating the relevance of multiroute exposures in establishing guideline values for drinking water contaminants.
    Krishnan K; Carrier R
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(3):300-16. PubMed ID: 18781539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating pharmacokinetic differences between children and adults in assessing children's risks to environmental toxicants.
    Ginsberg G; Hattis D; Sonawane B
    Toxicol Appl Pharmacol; 2004 Jul; 198(2):164-83. PubMed ID: 15236952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting maternal rat and pup exposures: how different are they?
    Yoon M; Barton HA
    Toxicol Sci; 2008 Mar; 102(1):15-32. PubMed ID: 18024990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Options for incorporating children's inhaled dose into human health risk assessment.
    Ginsberg G; Foos B; Dzubow RB; Firestone M
    Inhal Toxicol; 2010 Jul; 22(8):627-47. PubMed ID: 20540622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state solutions to PBPK models and their applications to risk assessment I: Route-to-route extrapolation of volatile chemicals.
    Chiu WA; White P
    Risk Anal; 2006 Jun; 26(3):769-80. PubMed ID: 16834633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the adequacy of maximum contaminant levels as health-protective cleanup goals: an analysis based on Monte Carlo techniques.
    Finley BL; Scott P; Paustenbach DJ
    Regul Toxicol Pharmacol; 1993 Dec; 18(3):438-55. PubMed ID: 8128005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An assessment of the impact of multi-route co-exposures on human variability in toxicokinetics: A case study with binary and quaternary mixtures of volatile drinking water contaminants.
    Tohon H; Valcke M; Haddad S
    J Appl Toxicol; 2019 Jul; 39(7):974-991. PubMed ID: 30834571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological modeling of age-specific changes in the pharmacokinetics of organic chemicals in children.
    Price K; Haddad S; Krishnan K
    J Toxicol Environ Health A; 2003 Mar; 66(5):417-33. PubMed ID: 12712630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human variability in xenobiotic metabolism and pathway-related uncertainty factors for chemical risk assessment: a review.
    Dorne JL; Walton K; Renwick AG
    Food Chem Toxicol; 2005 Feb; 43(2):203-16. PubMed ID: 15621332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.