These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 21606319)

  • 1. Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice.
    Ficklin SP; Feltus FA
    Plant Physiol; 2011 Jul; 156(3):1244-56. PubMed ID: 21606319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks.
    Ficklin SP; Luo F; Feltus FA
    Plant Physiol; 2010 Sep; 154(1):13-24. PubMed ID: 20668062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A developmental transcriptional network for maize defines coexpression modules.
    Downs GS; Bi YM; Colasanti J; Wu W; Chen X; Zhu T; Rothstein SJ; Lukens LN
    Plant Physiol; 2013 Apr; 161(4):1830-43. PubMed ID: 23388120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATTED-II in 2016: A Plant Coexpression Database Towards Lineage-Specific Coexpression.
    Aoki Y; Okamura Y; Tadaka S; Kinoshita K; Obayashi T
    Plant Cell Physiol; 2016 Jan; 57(1):e5. PubMed ID: 26546318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene coexpression network analysis as a source of functional annotation for rice genes.
    Childs KL; Davidson RM; Buell CR
    PLoS One; 2011; 6(7):e22196. PubMed ID: 21799793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trait ontology analysis based on association mapping studies bridges the gap between crop genomics and Phenomics.
    Pan Q; Wei J; Guo F; Huang S; Gong Y; Liu H; Liu J; Li L
    BMC Genomics; 2019 Jun; 20(1):443. PubMed ID: 31159731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs.
    Cheng D; Tan M; Yu H; Li L; Zhu D; Chen Y; Jiang M
    BMC Genomics; 2018 Sep; 19(1):709. PubMed ID: 30257650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory motifs identified from a maize developmental coexpression network.
    Downs GS; Liseron-Monfils C; Lukens LN
    Genome; 2014 Mar; 57(3):181-4. PubMed ID: 24884692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice.
    Movahedi S; Van de Peer Y; Vandepoele K
    Plant Physiol; 2011 Jul; 156(3):1316-30. PubMed ID: 21571672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes.
    Chang YM; Lin HH; Liu WY; Yu CP; Chen HJ; Wartini PP; Kao YY; Wu YH; Lin JJ; Lu MJ; Tu SL; Wu SH; Shiu SH; Ku MSB; Li WH
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3091-3099. PubMed ID: 30718437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic resources for maize cell wall biology.
    Penning BW; Hunter CT; Tayengwa R; Eveland AL; Dugard CK; Olek AT; Vermerris W; Koch KE; McCarty DR; Davis MF; Thomas SR; McCann MC; Carpita NC
    Plant Physiol; 2009 Dec; 151(4):1703-28. PubMed ID: 19926802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MaizeNet: a co-functional network for network-assisted systems genetics in Zea mays.
    Lee T; Lee S; Yang S; Lee I
    Plant J; 2019 Aug; 99(3):571-582. PubMed ID: 31006149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat.
    Wei K; Chen H
    BMC Plant Biol; 2018 Nov; 18(1):309. PubMed ID: 30497403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted analysis of orthologous phytochrome A regions of the sorghum, maize, and rice genomes using comparative gene-island sequencing.
    Morishige DT; Childs KL; Moore LD; Mullet JE
    Plant Physiol; 2002 Dec; 130(4):1614-25. PubMed ID: 12481045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Premeiotic, 24-Nucleotide Reproductive PhasiRNAs Are Abundant in Anthers of Wheat and Barley But Not Rice and Maize.
    BĂ©langer S; Pokhrel S; Czymmek K; Meyers BC
    Plant Physiol; 2020 Nov; 184(3):1407-1423. PubMed ID: 32917771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.
    Huang J; Zheng J; Yuan H; McGinnis K
    BMC Plant Biol; 2018 Jun; 18(1):111. PubMed ID: 29879919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response.
    Ma S; Ding Z; Li P
    BMC Plant Biol; 2017 Aug; 17(1):131. PubMed ID: 28764653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution.
    Guo H; Moose SP
    Plant Cell; 2003 May; 15(5):1143-58. PubMed ID: 12724540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development.
    Liu Y; Xie S; Yu J
    PLoS One; 2016; 11(2):e0148287. PubMed ID: 26829553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coexpression network and trans-activation analyses of maize reproductive phasiRNA loci.
    Zhan J; O'Connor L; Marchant DB; Teng C; Walbot V; Meyers BC
    Plant J; 2023 Jan; 113(1):160-173. PubMed ID: 36440497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.