These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2160633)

  • 1. Retinal cyclic GMP and AMP in rod-cone dysplasia: comparison of assays in fixed and unfixed retinal tissues.
    Acland GM; Fletcher RT; Chader GJ; Aguirre GD
    Ophthalmic Res; 1990; 22(2):117-22. PubMed ID: 2160633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rod-cone dysplasia in Irish setters: a defect in cyclic GMP metabolism in visual cells.
    Aquirre G; Farber D; Lolley R; Fletcher RT; Chader GJ
    Science; 1978 Sep; 201(4361):1133-4. PubMed ID: 210508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hereditary retinal degenerations in the dog: specificity of abnormal cyclic nucleotide metabolism to diseases of arrested photoreceptor development.
    Aguirre G; Acland G; Chader G
    Birth Defects Orig Artic Ser; 1982; 18(6):119-33. PubMed ID: 6293602
    [No Abstract]   [Full Text] [Related]  

  • 4. Inherited rod-cone dysplasia: abnormal distribution of cyclic GMP in visual cells of affected Irish setters.
    Barbehenn E; Gagnon C; Noelker D; Aguirre G; Chader G
    Exp Eye Res; 1988 Feb; 46(2):149-59. PubMed ID: 2895011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotides of cone-dominant retinas. Reduction of cyclic AMP levels by light and by cone degeneration.
    Farber DB; Souza DW; Chase DG; Lolley RN
    Invest Ophthalmol Vis Sci; 1981 Jan; 20(1):24-31. PubMed ID: 6256308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of light and dark adaptation on the levels of cyclic nucleotides in retinas of mice heterozygous for a gene for photoreceptor dystrophy.
    Ferrendelli JA; Cohen AI
    Biochem Biophys Res Commun; 1976 Nov; 73(2):421-7. PubMed ID: 187198
    [No Abstract]   [Full Text] [Related]  

  • 7. Non-allelism of three genes (rcd1, rcd2 and erd) for early-onset hereditary retinal degeneration.
    Acland GM; Fletcher RT; Gentleman S; Chader GJ; Aguirre GD
    Exp Eye Res; 1989 Dec; 49(6):983-98. PubMed ID: 2558906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered cyclic nucleotide metabolism and the pathogenesis of hereditary retinal dystrophies.
    Bitensky MW; Rasenick MM; Shinozawa T; Uchida S; Yamazaki A
    Adv Cyclic Nucleotide Res; 1980; 12():227-37. PubMed ID: 6250356
    [No Abstract]   [Full Text] [Related]  

  • 9. Cyclic nucleotide metabolism in the vertebrate retina.
    Lolley RN
    Curr Top Eye Res; 1980; 2():67-118. PubMed ID: 6284444
    [No Abstract]   [Full Text] [Related]  

  • 10. Photoreceptor degeneration in a pure-cone retina. Effects of cyclic nucleotides, and inhibitors of phosphodiesterase and protein synthesis.
    Williams DS; Colley NJ; Farber DB
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1059-69. PubMed ID: 2439472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cosegregation of codon 807 mutation of the canine rod cGMP phosphodiesterase beta gene and rcd1.
    Ray K; Baldwin VJ; Acland GM; Blanton SH; Aguirre GD
    Invest Ophthalmol Vis Sci; 1994 Dec; 35(13):4291-9. PubMed ID: 8002249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal degeneration in the dog. III. Abnormal cyclic nucleotide metabolism in rod-cone dysplasia.
    Aguirre G; Farber D; Lolley R; O'Brien P; Alligood J; Fletcher RT; Chader G
    Exp Eye Res; 1982 Dec; 35(6):625-42. PubMed ID: 6295790
    [No Abstract]   [Full Text] [Related]  

  • 13. Elevation of cGMP with normal expression and activity of rod cGMP-PDE in photoreceptor degenerate labrador retrievers.
    Kommonen B; Kylma T; Cohen RJ; Penn JS; Paulin L; Hurwitz M; Hurwitz RL
    Ophthalmic Res; 1996; 28(1):19-28. PubMed ID: 8726673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of diamide on cyclic nucleotide levels in rat retina.
    Winkler BS; Fletcher RT; Chader GJ
    Invest Ophthalmol Vis Sci; 1984 Apr; 25(4):461-3. PubMed ID: 6323342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic nucleotides in rod- and cone-dominant retinas.
    Farber DB; Chase DG; Lolley RN
    Neurochem Int; 1980; 1C():327-36. PubMed ID: 20487745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cone visual cell degeneration in ground squirrel retina: disruption of morphology and cyclic nucleotide metabolism by lodoacetic acid.
    Farber DB; Souza DW; Chase DG
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1236-49. PubMed ID: 6885310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic nucleotides in the cone-dominant ground squirrel retina.
    De Vries GW; Cohen AI; Lowry OH; Ferrendelli JA
    Exp Eye Res; 1979 Sep; 29(3):315-21. PubMed ID: 230065
    [No Abstract]   [Full Text] [Related]  

  • 18. Distribution patterns of photoreceptors, protein, and cyclic nucleotides in the human retina.
    Farber DB; Flannery JG; Lolley RN; Bok D
    Invest Ophthalmol Vis Sci; 1985 Nov; 26(11):1558-68. PubMed ID: 2997074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and fate of interphotoreceptor matrix components during dysplastic photoreceptor differentiation: a lectin cytochemical study of rod-cone dysplasia 1.
    Mieziewska K; Van Veen T; Aguirre GD
    Exp Eye Res; 1993 Apr; 56(4):429-41. PubMed ID: 8500556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in cyclic necleotides in dogs after triiodothyronine.
    Fernandez-Pol JA; Hays MT
    Acta Endocrinol (Copenh); 1975 May; 79(1):66-75. PubMed ID: 165647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.