These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 21606374)

  • 1. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.
    Melillo JM; Butler S; Johnson J; Mohan J; Steudler P; Lux H; Burrows E; Bowles F; Smith R; Scott L; Vario C; Hill T; Burton A; Zhou YM; Tang J
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9508-12. PubMed ID: 21606374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil warming and carbon-cycle feedbacks to the climate system.
    Melillo JM; Steudler PA; Aber JD; Newkirk K; Lux H; Bowles FP; Catricala C; Magill A; Ahrens T; Morrisseau S
    Science; 2002 Dec; 298(5601):2173-6. PubMed ID: 12481133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest.
    Savage KE; Parton WJ; Davidson EA; Trumbore SE; Frey SD
    Glob Chang Biol; 2013 Aug; 19(8):2389-400. PubMed ID: 23589498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil warming alters nitrogen cycling in a New England forest: implications for ecosystem function and structure.
    Butler SM; Melillo JM; Johnson JE; Mohan J; Steudler PA; Lux H; Burrows E; Smith RM; Vario CL; Scott L; Hill TD; Aponte N; Bowles F
    Oecologia; 2012 Mar; 168(3):819-28. PubMed ID: 21983640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term warming restructures Arctic tundra without changing net soil carbon storage.
    Sistla SA; Moore JC; Simpson RT; Gough L; Shaver GR; Schimel JP
    Nature; 2013 May; 497(7451):615-8. PubMed ID: 23676669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization.
    Mack MC; Schuur EA; Bret-Harte MS; Shaver GR; Chapin FS
    Nature; 2004 Sep; 431(7007):440-3. PubMed ID: 15386009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon.
    Heath J; Ayres E; Possell M; Bardgett RD; Black HI; Grant H; Ineson P; Kerstiens G
    Science; 2005 Sep; 309(5741):1711-3. PubMed ID: 16151007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.
    Yin H; Li Y; Xiao J; Xu Z; Cheng X; Liu Q
    Glob Chang Biol; 2013 Jul; 19(7):2158-67. PubMed ID: 23504744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen regulation of the climate-carbon feedback: evidence from a long-term global change experiment.
    Niu S; Sherry RA; Zhou X; Wan S; Luo Y
    Ecology; 2010 Nov; 91(11):3261-73. PubMed ID: 21141187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems.
    Zak DR; Holmes WE; Pregitzer KS
    Ecology; 2007 Oct; 88(10):2630-9. PubMed ID: 18027765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecosystem carbon loss with woody plant invasion of grasslands.
    Jackson RB; Banner JL; Jobbágy EG; Pockman WT; Wall DH
    Nature; 2002 Aug; 418(6898):623-6. PubMed ID: 12167857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover.
    Coetsee C; Bond WJ; February EC
    Oecologia; 2010 Apr; 162(4):1027-34. PubMed ID: 20213154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem.
    Weintraub MN; Scott-Denton LE; Schmidt SK; Monson RK
    Oecologia; 2007 Nov; 154(2):327-38. PubMed ID: 17657512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant roots increase both decomposition and stable organic matter formation in boreal forest soil.
    Adamczyk B; Sietiö OM; Straková P; Prommer J; Wild B; Hagner M; Pihlatie M; Fritze H; Richter A; Heinonsalo J
    Nat Commun; 2019 Sep; 10(1):3982. PubMed ID: 31484931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition.
    Jiang Y; Rastetter EB; Shaver GR; Rocha AV; Zhuang Q; Kwiatkowski BL
    Ecol Appl; 2017 Jan; 27(1):105-117. PubMed ID: 27898193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.
    Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G
    Ambio; 2004 Nov; 33(7):448-58. PubMed ID: 15573572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.
    Phillips RP; Finzi AC; Bernhardt ES
    Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO₂.
    Drake JE; Gallet-Budynek A; Hofmockel KS; Bernhardt ES; Billings SA; Jackson RB; Johnsen KS; Lichter J; McCarthy HR; McCormack ML; Moore DJ; Oren R; Palmroth S; Phillips RP; Pippen JS; Pritchard SG; Treseder KK; Schlesinger WH; Delucia EH; Finzi AC
    Ecol Lett; 2011 Apr; 14(4):349-57. PubMed ID: 21303437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment.
    Norby RJ; Ledford J; Reilly CD; Miller NE; O'Neill EG
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9689-93. PubMed ID: 15210962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental drivers of increased ecosystem respiration in a warming tundra.
    Maes SL; Dietrich J; Midolo G; Schwieger S; Kummu M; Vandvik V; Aerts R; Althuizen IHJ; Biasi C; Björk RG; Böhner H; Carbognani M; Chiari G; Christiansen CT; Clemmensen KE; Cooper EJ; Cornelissen JHC; Elberling B; Faubert P; Fetcher N; Forte TGW; Gaudard J; Gavazov K; Guan Z; Guðmundsson J; Gya R; Hallin S; Hansen BB; Haugum SV; He JS; Hicks Pries C; Hovenden MJ; Jalava M; Jónsdóttir IS; Juhanson J; Jung JY; Kaarlejärvi E; Kwon MJ; Lamprecht RE; Le Moullec M; Lee H; Marushchak ME; Michelsen A; Munir TM; Myrsky EM; Nielsen CS; Nyberg M; Olofsson J; Óskarsson H; Parker TC; Pedersen EP; Petit Bon M; Petraglia A; Raundrup K; Ravn NMR; Rinnan R; Rodenhizer H; Ryde I; Schmidt NM; Schuur EAG; Sjögersten S; Stark S; Strack M; Tang J; Tolvanen A; Töpper JP; Väisänen MK; van Logtestijn RSP; Voigt C; Walz J; Weedon JT; Yang Y; Ylänne H; Björkman MP; Sarneel JM; Dorrepaal E
    Nature; 2024 May; 629(8010):105-113. PubMed ID: 38632407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.