These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21606549)

  • 1. Predicting metal-binding sites from protein sequence.
    Passerini A; Lippi M; Frasconi P
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):203-13. PubMed ID: 21606549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks.
    Passerini A; Punta M; Ceroni A; Rost B; Frasconi P
    Proteins; 2006 Nov; 65(2):305-16. PubMed ID: 16927295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of 3D metal binding sites from translated gene sequences based on remote-homology templates.
    Levy R; Edelman M; Sobolev V
    Proteins; 2009 Aug; 76(2):365-74. PubMed ID: 19173310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information.
    Qiao L; Xie D
    Anal Biochem; 2019 Feb; 566():75-88. PubMed ID: 30414728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PSSM-based prediction of DNA binding sites in proteins.
    Ahmad S; Sarai A
    BMC Bioinformatics; 2005 Feb; 6():33. PubMed ID: 15720719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence.
    Lippi M; Passerini A; Punta M; Rost B; Frasconi P
    Bioinformatics; 2008 Sep; 24(18):2094-5. PubMed ID: 18635571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites.
    Murakami Y; Mizuguchi K
    Bioinformatics; 2010 Aug; 26(15):1841-8. PubMed ID: 20529890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting ligand binding residues and functional sites using multipositional correlations with graph theoretic clustering and kernel CCA.
    González AJ; Liao L; Wu CH
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):992-1001. PubMed ID: 22025754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using structural motif descriptors for sequence-based binding site prediction.
    Henschel A; Winter C; Kim WK; Schroeder M
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S5. PubMed ID: 17570148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico identification of putative metal binding motifs.
    Thilakaraj R; Raghunathan K; Anishetty S; Pennathur G
    Bioinformatics; 2007 Feb; 23(3):267-71. PubMed ID: 17148509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction.
    Kauffman C; Karypis G
    Bioinformatics; 2009 Dec; 25(23):3099-107. PubMed ID: 19786483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-based prediction of protein-protein interaction sites with L1-logreg classifier.
    Dhole K; Singh G; Pai PP; Mondal S
    J Theor Biol; 2014 May; 348():47-54. PubMed ID: 24486250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of Computational Approaches for Prediction of DNA-Binding Residues on Protein Surfaces.
    Xiong Y; Zhu X; Dai H; Wei DQ
    Methods Mol Biol; 2018; 1754():223-234. PubMed ID: 29536446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STAR: predicting recombination sites from amino acid sequence.
    Bauer DC; Bodén M; Thier R; Gillam EM
    BMC Bioinformatics; 2006 Oct; 7():437. PubMed ID: 17026775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.
    Ajitha M; Sundar K; Arul Mugilan S; Arumugam S
    Proteins; 2018 Mar; 86(3):322-331. PubMed ID: 29235146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient approaches for retrieving protein tertiary structures.
    Mirceva G; Cingovska I; Dimov Z; Davcev D
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1166-79. PubMed ID: 22025763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide connectivity prediction using recursive neural networks and evolutionary information.
    Vullo A; Frasconi P
    Bioinformatics; 2004 Mar; 20(5):653-9. PubMed ID: 15033872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence.
    Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2010 Feb; 26(3):326-32. PubMed ID: 20019059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.