These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21606549)

  • 21. Using evolutionary information to find specificity-determining and co-evolving residues.
    Kolesov G; Mirny LA
    Methods Mol Biol; 2009; 541():421-48. PubMed ID: 19381538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of metal ion binding sites based on amino acid sequences.
    Cao X; Hu X; Zhang X; Gao S; Ding C; Feng Y; Bao W
    PLoS One; 2017; 12(8):e0183756. PubMed ID: 28854211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence-based prediction of protein interaction sites with an integrative method.
    Chen XW; Jeong JC
    Bioinformatics; 2009 Mar; 25(5):585-91. PubMed ID: 19153136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of protein-protein interaction sites using support vector machines.
    Koike A; Takagi T
    Protein Eng Des Sel; 2004 Feb; 17(2):165-73. PubMed ID: 15047913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of RNA-binding sites in proteins by integrating various sequence information.
    Wang CC; Fang Y; Xiao J; Li M
    Amino Acids; 2011 Jan; 40(1):239-48. PubMed ID: 20549269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global sequence properties for superfamily prediction: a machine learning approach.
    Dobson RJ; Munroe PB; Caulfield MJ; Saqi MA
    J Integr Bioinform; 2009 Aug; 6(1):109. PubMed ID: 20134076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mining sequential patterns for protein fold recognition.
    Exarchos TP; Papaloukas C; Lampros C; Fotiadis DI
    J Biomed Inform; 2008 Feb; 41(1):165-79. PubMed ID: 17573243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting DNA-binding sites of proteins from amino acid sequence.
    Yan C; Terribilini M; Wu F; Jernigan RL; Dobbs D; Honavar V
    BMC Bioinformatics; 2006 May; 7():262. PubMed ID: 16712732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of the protein structural class by specific peptide frequencies.
    Costantini S; Facchiano AM
    Biochimie; 2009 Feb; 91(2):226-9. PubMed ID: 18957316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design.
    Cheng G; Qian B; Samudrala R; Baker D
    Nucleic Acids Res; 2005; 33(18):5861-7. PubMed ID: 16224101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals.
    Amrein B; Schmid M; Collet G; Cuniasse P; Gilardoni F; Seebeck FP; Ward TR
    Metallomics; 2012 Apr; 4(4):379-88. PubMed ID: 22392271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of outlier residues for improving interface prediction in protein heterocomplexes.
    Chen P; Wong L; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1155-65. PubMed ID: 22529331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Domain-based small molecule binding site annotation.
    Snyder KA; Feldman HJ; Dumontier M; Salama JJ; Hogue CW
    BMC Bioinformatics; 2006 Mar; 7():152. PubMed ID: 16545112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.
    Ma X; Guo J; Xiao K; Sun X
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1385-93. PubMed ID: 26671809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying Affinity Classes of Inorganic Materials Binding Sequences via a Graph-Based Model.
    Du N; Knecht MR; Swihart MT; Tang Z; Walsh TR; Zhang A
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):193-204. PubMed ID: 26357089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recognizing ion ligand binding sites by SMO algorithm.
    Wang S; Hu X; Feng Z; Zhang X; Liu L; Sun K; Xu S
    BMC Mol Cell Biol; 2019 Dec; 20(Suppl 3):53. PubMed ID: 31823742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information.
    Ma X; Guo J; Liu HD; Xie JM; Sun X
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1766-75. PubMed ID: 22868682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence-based prediction of microRNA-binding residues in proteins using cost-sensitive Laplacian support vector machines.
    Wu JS; Zhou ZH
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):752-9. PubMed ID: 24091407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.