These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
628 related articles for article (PubMed ID: 21606597)
1. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. Inoki K; Mori H; Wang J; Suzuki T; Hong S; Yoshida S; Blattner SM; Ikenoue T; Rüegg MA; Hall MN; Kwiatkowski DJ; Rastaldi MP; Huber TB; Kretzler M; Holzman LB; Wiggins RC; Guan KL J Clin Invest; 2011 Jun; 121(6):2181-96. PubMed ID: 21606597 [TBL] [Abstract][Full Text] [Related]
2. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. Gödel M; Hartleben B; Herbach N; Liu S; Zschiedrich S; Lu S; Debreczeni-Mór A; Lindenmeyer MT; Rastaldi MP; Hartleben G; Wiech T; Fornoni A; Nelson RG; Kretzler M; Wanke R; Pavenstädt H; Kerjaschki D; Cohen CD; Hall MN; Rüegg MA; Inoki K; Walz G; Huber TB J Clin Invest; 2011 Jun; 121(6):2197-209. PubMed ID: 21606591 [TBL] [Abstract][Full Text] [Related]
3. The targeted podocyte. Fogo AB J Clin Invest; 2011 Jun; 121(6):2142-5. PubMed ID: 21606599 [TBL] [Abstract][Full Text] [Related]
4. mTOR in podocyte function: is rapamycin good for diabetic nephropathy? Lu MK; Gong XG; Guan KL Cell Cycle; 2011 Oct; 10(20):3415-6. PubMed ID: 22067710 [No Abstract] [Full Text] [Related]
5. Beneficial effect on podocyte number in experimental diabetic nephropathy resulting from combined atrasentan and RAAS inhibition therapy. Hudkins KL; Wietecha TA; Steegh F; Alpers CE Am J Physiol Renal Physiol; 2020 May; 318(5):F1295-F1305. PubMed ID: 32249614 [TBL] [Abstract][Full Text] [Related]
6. Role of Ragulator in the Regulation of Mechanistic Target of Rapamycin Signaling in Podocytes and Glomerular Function. Yao Y; Wang J; Yoshida S; Nada S; Okada M; Inoki K J Am Soc Nephrol; 2016 Dec; 27(12):3653-3665. PubMed ID: 27032892 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of high mobility group box 1 (HMGB1) attenuates podocyte apoptosis and epithelial-mesenchymal transition by regulating autophagy flux. Jin J; Gong J; Zhao L; Zhang H; He Q; Jiang X J Diabetes; 2019 Oct; 11(10):826-836. PubMed ID: 30864227 [TBL] [Abstract][Full Text] [Related]
8. Translationally controlled tumour protein is associated with podocyte hypertrophy in a mouse model of type 1 diabetes. Kim DK; Nam BY; Li JJ; Park JT; Lee SH; Kim DH; Kim JY; Kang HY; Han SH; Yoo TH; Han DS; Kang SW Diabetologia; 2012 Apr; 55(4):1205-17. PubMed ID: 22311416 [TBL] [Abstract][Full Text] [Related]
9. Neuregulin 4 Attenuates Podocyte Injury and Proteinuria in Part by Activating AMPK/mTOR-Mediated Autophagy in Mice. Deng J; Yang Q; Zhu W; Zhang Y; Lin M; She J; Li J; Xiao Y; Xiao J; Xu X; He H; Zhu B; Ding Y J Cell Biochem; 2024 Oct; 125(10):e30634. PubMed ID: 39091188 [TBL] [Abstract][Full Text] [Related]
10. TXNIP deficiency mitigates podocyte apoptosis via restraining the activation of mTOR or p38 MAPK signaling in diabetic nephropathy. Song S; Qiu D; Wang Y; Wei J; Wu H; Wu M; Wang S; Zhou X; Shi Y; Duan H Exp Cell Res; 2020 Mar; 388(2):111862. PubMed ID: 31982382 [TBL] [Abstract][Full Text] [Related]
11. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice. Yang F; Qu Q; Zhao C; Liu X; Yang P; Li Z; Han L; Shi X Biomed Pharmacother; 2020 Sep; 129():110479. PubMed ID: 32768963 [TBL] [Abstract][Full Text] [Related]
12. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Yasuda M; Tanaka Y; Kume S; Morita Y; Chin-Kanasaki M; Araki H; Isshiki K; Araki S; Koya D; Haneda M; Kashiwagi A; Maegawa H; Uzu T Biochim Biophys Acta; 2014 Jul; 1842(7):1097-108. PubMed ID: 24726883 [TBL] [Abstract][Full Text] [Related]
13. Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis. Herbach N; Schairer I; Blutke A; Kautz S; Siebert A; Göke B; Wolf E; Wanke R Am J Physiol Renal Physiol; 2009 Apr; 296(4):F819-29. PubMed ID: 19211686 [TBL] [Abstract][Full Text] [Related]
14. The protective effects of rapamycin on cell autophagy in the renal tissues of rats with diabetic nephropathy via mTOR-S6K1-LC3II signaling pathway. Liu L; Yang L; Chang B; Zhang J; Guo Y; Yang X Ren Fail; 2018 Nov; 40(1):492-497. PubMed ID: 30200803 [TBL] [Abstract][Full Text] [Related]
16. Tuberous sclerosis-2 (TSC2) regulates the stability of death-associated protein kinase-1 (DAPK) through a lysosome-dependent degradation pathway. Lin Y; Henderson P; Pettersson S; Satsangi J; Hupp T; Stevens C FEBS J; 2011 Jan; 278(2):354-70. PubMed ID: 21134130 [TBL] [Abstract][Full Text] [Related]
17. Apelin promotes diabetic nephropathy by inducing podocyte dysfunction via inhibiting proteasome activities. Guo C; Liu Y; Zhao W; Wei S; Zhang X; Wang W; Zeng X J Cell Mol Med; 2015 Sep; 19(9):2273-85. PubMed ID: 26103809 [TBL] [Abstract][Full Text] [Related]
18. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli. Wang X; Gao L; Lin H; Song J; Wang J; Yin Y; Zhao J; Xu X; Li Z; Li L Eur J Pharmacol; 2018 Apr; 824():170-178. PubMed ID: 29444469 [TBL] [Abstract][Full Text] [Related]
19. Astragaloside IV ameliorates diabetic nephropathy involving protection of podocytes in streptozotocin induced diabetic rats. Chen J; Chen Y; Luo Y; Gui D; Huang J; He D Eur J Pharmacol; 2014 Aug; 736():86-94. PubMed ID: 24809932 [TBL] [Abstract][Full Text] [Related]
20. Loss of PTEN promotes podocyte cytoskeletal rearrangement, aggravating diabetic nephropathy. Lin J; Shi Y; Peng H; Shen X; Thomas S; Wang Y; Truong LD; Dryer SE; Hu Z; Xu J J Pathol; 2015 May; 236(1):30-40. PubMed ID: 25641678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]