BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21606652)

  • 1. Moderate intrarenal vasoconstriction after high pressor doses of norepinephrine in the rat: comparison with effects of angiotensin II.
    Badzyńska B; Sadowski J
    Kidney Blood Press Res; 2011; 34(5):307-10. PubMed ID: 21606652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain and peripheral angiotensin II type 1 receptors mediate renal vasoconstrictor and blood pressure responses to angiotensin IV in the rat.
    Yang R; Smolders I; De Bundel D; Fouyn R; Halberg M; Demaegdt H; Vanderheyden P; Dupont AG
    J Hypertens; 2008 May; 26(5):998-1007. PubMed ID: 18398343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prostaglandins but not nitric oxide protect renal medullary perfusion in anaesthetised rats receiving angiotensin II.
    Badzyńska B; Grzelec-Mojzesowicz M; Sadowski J
    J Physiol; 2003 May; 548(Pt 3):875-80. PubMed ID: 12640010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of exogenous angiotensin II on renal tissue nitric oxide and intrarenal circulation in anaesthetized rats.
    Badzyńska B; Grzelec-Mojzesowicz M; Sadowski J
    Acta Physiol Scand; 2004 Nov; 182(3):313-8. PubMed ID: 15491410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of verapamil on renal vasoconstriction induced by angiotensin II, norepinephrine or renal nerve stimulation in anesthetized dogs.
    Ogawa N; Kushida H; Satoh S
    Arch Int Pharmacodyn Ther; 1984 Mar; 268(1):113-21. PubMed ID: 6732356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide modulates angiotensin II- and norepinephrine-dependent vasoconstriction in rat kidney.
    Parekh N; Dobrowolski L; Zou AP; Steinhausen M
    Am J Physiol; 1996 Mar; 270(3 Pt 2):R630-5. PubMed ID: 8780230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chloride channel blockers on rat renal vascular responses to angiotensin II and norepinephrine.
    Steendahl J; Holstein-Rathlou NH; Sorensen CM; Salomonsson M
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F323-30. PubMed ID: 14506073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity of angiotensin action in renal circulation.
    Ito S; Amin J; Ren Y; Arima S; Abe K; Carretero OA
    Kidney Int Suppl; 1997 Dec; 63():S128-31. PubMed ID: 9407440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiotensin I- and II- and norepinephrine-mediated pressor responses in an ancient holostean fish, the bowfin (Amia calva).
    Butler DG; Oudit GY; Cadinouche MZ
    Gen Comp Endocrinol; 1995 Jun; 98(3):289-302. PubMed ID: 7628688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of renal nerve stimulation on intrarenal blood flow in rats with intact or inactivated NO synthases.
    Walkowska A; Badzyńska B; Kompanowska-Jezierska E; Johns EJ; Sadowski J
    Acta Physiol Scand; 2005 Jan; 183(1):99-105. PubMed ID: 15654923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of adenosine A(1) receptor in angiotensin II- and norepinephrine-induced renal vasoconstriction.
    Aki Y; Nishiyama A; Miyatake A; Kimura S; Kohno M; Abe Y
    J Pharmacol Exp Ther; 2002 Oct; 303(1):117-23. PubMed ID: 12235241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related changes in the sympathetic innervation of cerebral vessels and in carotid vascular responses to norepinephrine in the rat: in vitro and in vivo studies.
    Omar NM; Marshall JM
    J Appl Physiol (1985); 2010 Aug; 109(2):314-22. PubMed ID: 20466800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental selective elevation of renal medullary blood flow in hypertensive rats: evidence against short-term hypotensive effect.
    Bądzyńska B; Sadowski J
    Acta Physiol (Oxf); 2012 Aug; 205(4):484-93. PubMed ID: 22429683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of c-Jun N-terminal kinase in the regulation of vascular tone.
    Zhou MS; Schulman IH; Chadipiralla K; Raij L
    J Cardiovasc Pharmacol Ther; 2010 Mar; 15(1):78-83. PubMed ID: 20075153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin II exerts positive feedback on the intrarenal renin-angiotensin system by an angiotensin converting enzyme-dependent mechanism.
    Sadjadi J; Kramer GL; Yu CH; Welborn MB; Modrall JG
    J Surg Res; 2005 Dec; 129(2):272-7. PubMed ID: 15992826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of angiotensin-converting enzyme two-week inhibition on renal angiotensin II receptors and renal vascular reactivity in SHR.
    Haddad G; Garcia R
    J Mol Cell Cardiol; 1997 Feb; 29(2):813-22. PubMed ID: 9140837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced slow-pressor response to angiotensin II in spontaneously hypertensive rats.
    Li P; Jackson EK
    J Pharmacol Exp Ther; 1989 Dec; 251(3):909-21. PubMed ID: 2557422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADP-ribosyl cyclase and ryanodine receptor activity contribute to basal renal vasomotor tone and agonist-induced renal vasoconstriction in vivo.
    Thai TL; Fellner SK; Arendshorst WJ
    Am J Physiol Renal Physiol; 2007 Oct; 293(4):F1107-14. PubMed ID: 17652368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide synthase inhibition accelerates the pressor response to low-dose angiotensin II, exacerbates target organ damage, and induces renin escape.
    Hu L; Sealey JE; Chen R; Zhou Y; Merali C; Shi Y; Laragh JH; Catanzaro DF
    Am J Hypertens; 2004 May; 17(5 Pt 1):395-403. PubMed ID: 15110897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.