BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21607140)

  • 1. Involvement of cholangiocyte proliferation in biliary fibrosis.
    Priester S; Wise C; Glaser SS
    World J Gastrointest Pathophysiol; 2010 Jun; 1(2):30-7. PubMed ID: 21607140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulators of Cholangiocyte Proliferation.
    Hall C; Sato K; Wu N; Zhou T; Kyritsi K; Meng F; Glaser S; Alpini G
    Gene Expr; 2017 Feb; 17(2):155-171. PubMed ID: 27412505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2
    Zhou T; Kyritsi K; Wu N; Francis H; Yang Z; Chen L; O'Brien A; Kennedy L; Ceci L; Meadows V; Kusumanchi P; Wu C; Baiocchi L; Skill NJ; Saxena R; Sybenga A; Xie L; Liangpunsakul S; Meng F; Alpini G; Glaser S
    EBioMedicine; 2019 Oct; 48():130-142. PubMed ID: 31522982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear Translocation of RELB Is Increased in Diseased Human Liver and Promotes Ductular Reaction and Biliary Fibrosis in Mice.
    Elßner C; Goeppert B; Longerich T; Scherr AL; Stindt J; Nanduri LK; Rupp C; Kather JN; Schmitt N; Kautz N; Breuhahn K; Ismail L; Heide D; Hetzer J; García-Beccaria M; Hövelmeyer N; Waisman A; Urbanik T; Mueller S; Gdynia G; Banales JM; Roessler S; Schirmacher P; Jäger D; Schölch S; Keitel V; Heikenwalder M; Schulze-Bergkamen H; Köhler BC
    Gastroenterology; 2019 Mar; 156(4):1190-1205.e14. PubMed ID: 30445013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal models of cholestasis: An update on inflammatory cholangiopathies.
    Mariotti V; Cadamuro M; Spirli C; Fiorotto R; Strazzabosco M; Fabris L
    Biochim Biophys Acta Mol Basis Dis; 2019 May; 1865(5):954-964. PubMed ID: 30398152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and structural features of cholangiocytes in health and disease.
    Maroni L; Haibo B; Ray D; Zhou T; Wan Y; Meng F; Marzioni M; Alpini G
    Cell Mol Gastroenterol Hepatol; 2015 Jul; 1(4):368-380. PubMed ID: 26273695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and Culturing Primary Chaolangiocytes from Mouse Liver.
    Kudira R; Sharma BK; Mullen M; Mohanty SK; Donnelly B; Tiao GM; Miethke A
    Bio Protoc; 2021 Oct; 11(20):e4192. PubMed ID: 34761065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of biliary proliferation by neuroendocrine factors: implications for the pathogenesis of cholestatic liver diseases.
    Munshi MK; Priester S; Gaudio E; Yang F; Alpini G; Mancinelli R; Wise C; Meng F; Franchitto A; Onori P; Glaser SS
    Am J Pathol; 2011 Feb; 178(2):472-84. PubMed ID: 21281779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholangiocyte proliferation and liver fibrosis.
    Glaser SS; Gaudio E; Miller T; Alvaro D; Alpini G
    Expert Rev Mol Med; 2009 Feb; 11():e7. PubMed ID: 19239726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bile Acids and Biliary Fibrosis.
    Aseem SO; Hylemon PB; Zhou H
    Cells; 2023 Mar; 12(5):. PubMed ID: 36899928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology.
    Franchitto A; Onori P; Renzi A; Carpino G; Mancinelli R; Alvaro D; Gaudio E
    Ann Transl Med; 2013 Oct; 1(3):27. PubMed ID: 25332971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hedgehog signaling in biliary fibrosis.
    Greenbaum LE
    J Clin Invest; 2008 Oct; 118(10):3263-5. PubMed ID: 18802487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysyl oxidase-like protein 2 (LOXL2) modulates barrier function in cholangiocytes in cholestasis.
    Pollheimer MJ; Racedo S; Mikels-Vigdal A; Marshall D; Bowlus C; Lackner C; Madl T; Karlsen TH; Hov JR; Lyman SK; Adamkewicz J; Smith V; Moreau E; Zollner G; Eide TJ; Stojakovic T; Scharnagl H; Gruber HJ; Stauber RE; Trauner M; Fickert P
    J Hepatol; 2018 Aug; 69(2):368-377. PubMed ID: 29709678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cholangiopathies.
    Lazaridis KN; LaRusso NF
    Mayo Clin Proc; 2015 Jun; 90(6):791-800. PubMed ID: 25957621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging concepts in biliary repair and fibrosis.
    Fabris L; Spirli C; Cadamuro M; Fiorotto R; Strazzabosco M
    Am J Physiol Gastrointest Liver Physiol; 2017 Aug; 313(2):G102-G116. PubMed ID: 28526690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crucial role of cholangiocytes in cholangiopathies.
    Park SM
    Gut Liver; 2012 Jul; 6(3):295-304. PubMed ID: 22844556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholangiocytes in the pathogenesis of primary sclerosing cholangitis and development of cholangiocarcinoma.
    Chung BK; Karlsen TH; Folseraas T
    Biochim Biophys Acta Mol Basis Dis; 2018 Apr; 1864(4 Pt B):1390-1400. PubMed ID: 28844951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Emerging Role of Macrophages in Chronic Cholangiopathies Featuring Biliary Fibrosis: An Attractive Therapeutic Target for Orphan Diseases.
    Cadamuro M; Girardi N; Gores GJ; Strazzabosco M; Fabris L
    Front Med (Lausanne); 2020; 7():115. PubMed ID: 32373615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melatonin regulation of biliary functions.
    Glaser S; Han Y; Francis H; Alpini G
    Hepatobiliary Surg Nutr; 2014 Feb; 3(1):35-43. PubMed ID: 24696836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholangiokines: undervalued modulators in the hepatic microenvironment.
    Cai X; Tacke F; Guillot A; Liu H
    Front Immunol; 2023; 14():1192840. PubMed ID: 37261338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.