These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage. Huang Y; Wu D; Han S; Li S; Xiao L; Zhang F; Feng X ChemSusChem; 2013 Aug; 6(8):1510-5. PubMed ID: 23784753 [TBL] [Abstract][Full Text] [Related]
3. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties. Jiang Y; Yuan T; Sun W; Yan M ACS Appl Mater Interfaces; 2012 Nov; 4(11):6216-20. PubMed ID: 23106602 [TBL] [Abstract][Full Text] [Related]
4. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123 [TBL] [Abstract][Full Text] [Related]
6. SnO(2) nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. Kim JG; Nam SH; Lee SH; Choi SM; Kim WB ACS Appl Mater Interfaces; 2011 Mar; 3(3):828-35. PubMed ID: 21344871 [TBL] [Abstract][Full Text] [Related]
7. Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material. Aravindan V; Mhamane D; Ling WC; Ogale S; Madhavi S ChemSusChem; 2013 Dec; 6(12):2240-4. PubMed ID: 23939711 [TBL] [Abstract][Full Text] [Related]
8. Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. Xia G; Li N; Li D; Liu R; Wang C; Li Q; Lü X; Spendelow JS; Zhang J; Wu G ACS Appl Mater Interfaces; 2013 Sep; 5(17):8607-14. PubMed ID: 23947768 [TBL] [Abstract][Full Text] [Related]
9. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. Wang Z; Luan D; Boey FY; Lou XW J Am Chem Soc; 2011 Apr; 133(13):4738-41. PubMed ID: 21401090 [TBL] [Abstract][Full Text] [Related]
10. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries. Chen LB; Yin XM; Mei L; Li CC; Lei DN; Zhang M; Li QH; Xu Z; Xu CM; Wang TH Nanotechnology; 2012 Jan; 23(3):035402. PubMed ID: 22173372 [TBL] [Abstract][Full Text] [Related]
11. Carbon and graphene double protection strategy to improve the SnO(x) electrode performance anodes for lithium-ion batteries. Zhu J; Lei D; Zhang G; Li Q; Lu B; Wang T Nanoscale; 2013 Jun; 5(12):5499-505. PubMed ID: 23670638 [TBL] [Abstract][Full Text] [Related]
12. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732 [TBL] [Abstract][Full Text] [Related]
13. Porous SnO2/layered titanate nanohybrid with enhanced electrochemical performance for reversible lithium storage. Kang JH; Paek SM; Choy JH Chem Commun (Camb); 2012 Jan; 48(3):458-60. PubMed ID: 22076699 [TBL] [Abstract][Full Text] [Related]
15. Improved lithium cyclability and storage in a multi-sized pore ("differential spacers") mesoporous SnO2. Shiva K; Asokan S; Bhattacharyya AJ Nanoscale; 2011 Apr; 3(4):1501-3. PubMed ID: 21412523 [TBL] [Abstract][Full Text] [Related]
16. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Zhou X; Wan LJ; Guo YG Adv Mater; 2013 Apr; 25(15):2152-7. PubMed ID: 23427163 [TBL] [Abstract][Full Text] [Related]
17. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Luo B; Wang B; Li X; Jia Y; Liang M; Zhi L Adv Mater; 2012 Jul; 24(26):3538-43. PubMed ID: 22678755 [TBL] [Abstract][Full Text] [Related]
18. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Chen S; Chen P; Wang Y Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120 [TBL] [Abstract][Full Text] [Related]
19. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity. Kong J; Liu Z; Yang Z; Tan HR; Xiong S; Wong SY; Li X; Lu X Nanoscale; 2012 Jan; 4(2):525-30. PubMed ID: 22127410 [TBL] [Abstract][Full Text] [Related]