These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 21607275)
1. Effectiveness of amendments on re-acidification and heavy metal immobilization in an extremely acidic mine soil. Yang SX; Li JT; Yang B; Liao B; Zhang JT; Shu WS J Environ Monit; 2011 Jul; 13(7):1876-83. PubMed ID: 21607275 [TBL] [Abstract][Full Text] [Related]
2. Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Pardo T; Clemente R; Bernal MP Chemosphere; 2011 Jul; 84(5):642-50. PubMed ID: 21492902 [TBL] [Abstract][Full Text] [Related]
3. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland. Yang SX; Liao B; Li JT; Guo T; Shu WS Chemosphere; 2010 Aug; 80(8):852-9. PubMed ID: 20580409 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Mignardi S; Corami A; Ferrini V Chemosphere; 2012 Jan; 86(4):354-60. PubMed ID: 22024096 [TBL] [Abstract][Full Text] [Related]
5. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality. Udeigwe TK; Eze PN; Teboh JM; Stietiya MH Environ Int; 2011 Jan; 37(1):258-67. PubMed ID: 20832118 [TBL] [Abstract][Full Text] [Related]
6. Reclamation of a mine contaminated soil using biologically reactive organic matrices. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409 [TBL] [Abstract][Full Text] [Related]
7. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification. Guo F; Ding C; Zhou Z; Huang G; Wang X Ecotoxicol Environ Saf; 2018 Oct; 161():164-172. PubMed ID: 29879577 [TBL] [Abstract][Full Text] [Related]
8. Influence of flooding and metal immobilising soil amendments on availability of metals for willows and earthworms in calcareous dredged sediment-derived soils. Vandecasteele B; Du Laing G; Lettens S; Jordaens K; Tack FM Environ Pollut; 2010 Jun; 158(6):2181-8. PubMed ID: 20347195 [TBL] [Abstract][Full Text] [Related]
9. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Simon L Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964 [TBL] [Abstract][Full Text] [Related]
10. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Gu HH; Qiu H; Tian T; Zhan SS; Deng TH; Chaney RL; Wang SZ; Tang YT; Morel JL; Qiu RL Chemosphere; 2011 May; 83(9):1234-40. PubMed ID: 21470654 [TBL] [Abstract][Full Text] [Related]
11. Application of biochar on mine tailings: effects and perspectives for land reclamation. Fellet G; Marchiol L; Delle Vedove G; Peressotti A Chemosphere; 2011 May; 83(9):1262-7. PubMed ID: 21501855 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico. Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977 [TBL] [Abstract][Full Text] [Related]
13. Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms. Uchimiya M; Klasson KT; Wartelle LH; Lima IM Chemosphere; 2011 Mar; 82(10):1438-47. PubMed ID: 21190718 [TBL] [Abstract][Full Text] [Related]
14. Restoration of high zinc and lead tailings with municipal biosolids and lime: a field study. Brown S; Svendsen A; Henry C J Environ Qual; 2009; 38(6):2189-97. PubMed ID: 19875774 [TBL] [Abstract][Full Text] [Related]
15. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China. Yang SX; Liao B; Yang ZH; Chai LY; Li JT Sci Total Environ; 2016 Aug; 562():427-434. PubMed ID: 27100018 [TBL] [Abstract][Full Text] [Related]
16. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Brown S; Christensen B; Lombi E; McLaughlin M; McGrath S; Colpaert J; Vangronsveld J Environ Pollut; 2005 Nov; 138(1):34-45. PubMed ID: 15950344 [TBL] [Abstract][Full Text] [Related]
17. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359 [TBL] [Abstract][Full Text] [Related]
18. Availability and vertical distribution of Cu, Cd, Ca, and P in soil as influenced by lime and apatite with different dosages: a 7-year field study. Cui H; Zhang W; Zhou J; Xu L; Zhang X; Zhang S; Zhou J Environ Sci Pollut Res Int; 2018 Dec; 25(35):35143-35153. PubMed ID: 30328042 [TBL] [Abstract][Full Text] [Related]
19. Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Kraus U; Wiegand J Sci Total Environ; 2006 Aug; 367(2-3):855-71. PubMed ID: 16500695 [TBL] [Abstract][Full Text] [Related]
20. Lime and compost promote plant re-colonization of metal-polluted, acidic soils. Ulriksen C; Ginocchio R; Mench M; Neaman A Int J Phytoremediation; 2012 Sep; 14(8):820-33. PubMed ID: 22908647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]