These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21607612)

  • 1. Location, location, location: genetic regulation of neural sex differences.
    Abel JL; Rissman EF
    Rev Endocr Metab Disord; 2012 Sep; 13(3):151-61. PubMed ID: 21607612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex differences in the cerebellum and frontal cortex: roles of estrogen receptor alpha and sex chromosome genes.
    Abel JM; Witt DM; Rissman EF
    Neuroendocrinology; 2011; 93(4):230-40. PubMed ID: 21325792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation of sex chromosomal genes and endocrine influences for hypothalamic sexual differentiation.
    Majdic G; Tobet S
    Front Neuroendocrinol; 2011 Apr; 32(2):137-45. PubMed ID: 21338619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hormones and development on the expression of the rat 1,25-dihydroxyvitamin D3 receptor gene. Comparison with calbindin gene expression.
    Huang YC; Lee S; Stolz R; Gabrielides C; Pansini-Porta A; Bruns ME; Bruns DE; Miffin TE; Pike JW; Christakos S
    J Biol Chem; 1989 Oct; 264(29):17454-61. PubMed ID: 2551904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calbindin-D28k immunoreactivity is a marker for a subdivision of the sexually dimorphic nucleus of the preoptic area of the rat: developmental profile and gonadal steroid modulation.
    Sickel MJ; McCarthy MM
    J Neuroendocrinol; 2000 May; 12(5):397-402. PubMed ID: 10792577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal nitric oxide synthase and calbindin delineate sex differences in the developing hypothalamus and preoptic area.
    Edelmann M; Wolfe C; Scordalakes EM; Rissman EF; Tobet S
    Dev Neurobiol; 2007 Sep; 67(10):1371-81. PubMed ID: 17638388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoic acid regulates the expression of the calcium binding protein, calbindin-D28K.
    Wang YZ; Christakos S
    Mol Endocrinol; 1995 Nov; 9(11):1510-21. PubMed ID: 8584029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential regulation by 1,25-dihydroxyvitamin D3 of calbindin-D9k and calbindin-D28k gene expression in mouse kidney.
    Li H; Christakos S
    Endocrinology; 1991 Jun; 128(6):2844-52. PubMed ID: 2036965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colocalization of calbindin-D28k with vasopressin in hypothalamic cells of the rat: a double-labeling immunofluorescence study.
    Arai R; Jacobowitz DM; Deura S
    Brain Res; 1993 Dec; 632(1-2):342-5. PubMed ID: 8149243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vulnerability of midbrain dopaminergic neurons in calbindin-D28k-deficient mice: lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice.
    Airaksinen MS; Thoenen H; Meyer M
    Eur J Neurosci; 1997 Jan; 9(1):120-7. PubMed ID: 9042576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calbindin D28K and parvalbumin gene expression in rat embryonic ventral forebrain grafts.
    Shoham S; Baker WA; Norris PJ; Emson PC
    Exp Brain Res; 1998 Feb; 118(4):551-63. PubMed ID: 9504850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation and chromosomal assignment of the mammalian calbindin-D28k gene.
    Varghese S; Deaven LL; Huang YC; Gill RK; Iacopino AM; Christakos S
    Mol Endocrinol; 1989 Mar; 3(3):495-502. PubMed ID: 2747655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration.
    McCormack AL; Atienza JG; Langston JW; Di Monte DA
    Neuroscience; 2006 Aug; 141(2):929-937. PubMed ID: 16677770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation by estrogen through the 5'-flanking region of the mouse calbindin-D28k gene.
    Gill RK; Christakos S
    Mol Endocrinol; 1995 Mar; 9(3):319-26. PubMed ID: 7776978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Androgen-dependent modulation of calbindin-D28K in hypothalamic tissue during prenatal development.
    Watson MA; Taylor H; Lephart ED
    Neurosci Res; 1998 Sep; 32(1):97-101. PubMed ID: 9831256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that brain-derived neurotrophic factor from presynaptic nerve terminals regulates the phenotype of calbindin-containing neurons in the lateral septum.
    Fawcett JP; Alonso-Vanegas MA; Morris SJ; Miller FD; Sadikot AF; Murphy RA
    J Neurosci; 2000 Jan; 20(1):274-82. PubMed ID: 10627605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical markers in rat brain: colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase.
    Rogers JH
    Brain Res; 1992 Aug; 587(2):203-10. PubMed ID: 1356063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of alkaline phosphatase in situ hybridization with immunohistochemistry: colocalization of calretinin-mRNA with calbindin and tyrosine hydroxylase immunoreactivity in rat substantia nigra neurons.
    Heppelmann B; SeƱaris R; Emson PC
    Brain Res; 1994 Jan; 635(1-2):293-9. PubMed ID: 7909717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midbrain dopaminergic neurons in the mouse: co-localization with Calbindin-D28K and calretinin.
    Liang CL; Sinton CM; German DC
    Neuroscience; 1996 Nov; 75(2):523-33. PubMed ID: 8931015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of calbindin-D28K gene expression by 1,25-dihydroxyvitamin D3 is correlated to receptor occupancy.
    Theofan G; Nguyen AP; Norman AW
    J Biol Chem; 1986 Dec; 261(36):16943-7. PubMed ID: 3023374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.