BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 21607645)

  • 1. Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer's disease.
    Sodhi RK; Singh N; Jaggi AS
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Aug; 384(2):115-24. PubMed ID: 21607645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review.
    Dinda B; Dinda M; Kulsi G; Chakraborty A; Dinda S
    Eur J Med Chem; 2019 May; 169():185-199. PubMed ID: 30877973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Therapy of Alzheimer disease].
    Kovács T
    Neuropsychopharmacol Hung; 2009 Mar; 11(1):27-33. PubMed ID: 19731816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.
    Chen Z; Zhong C
    Prog Neurobiol; 2013 Sep; 108():21-43. PubMed ID: 23850509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PPARs (Peroxisome Proliferator-activated Receptors) and Their Agonists in Alzheimer's Disease.
    Kumar M; Ashok SA; Datusalia AK; Khatik GL
    Med Chem; 2024 May; ():. PubMed ID: 38726789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liver X receptors: emerging therapeutic targets for Alzheimer's disease.
    Sodhi RK; Singh N
    Pharmacol Res; 2013 Jun; 72():45-51. PubMed ID: 23542729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of Synthetic Isoxazolone Derivative Role in Alzheimer's Disease: Computational and Pharmacological Approach.
    Ali M; Saleem U; Anwar F; Imran M; Nadeem H; Ahmad B; Ali T; Atta-Ur-Rehman ; Ismail T
    Neurochem Res; 2021 Apr; 46(4):905-920. PubMed ID: 33486698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuropep-1 ameliorates learning and memory deficits in an Alzheimer's disease mouse model, increases brain-derived neurotrophic factor expression in the brain, and causes reduction of amyloid beta plaques.
    Shin MK; Kim HG; Baek SH; Jung WR; Park DI; Park JS; Jo DG; Kim KL
    Neurobiol Aging; 2014 May; 35(5):990-1001. PubMed ID: 24268884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Berberine: A Plant-derived Alkaloid with Therapeutic Potential to Combat Alzheimer's disease.
    Singh AK; Singh SK; Nandi MK; Mishra G; Maurya A; Rai A; Rai GK; Awasthi R; Sharma B; Kulkarni GT
    Cent Nerv Syst Agents Med Chem; 2019; 19(3):154-170. PubMed ID: 31429696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SLOH, a carbazole-based fluorophore, mitigates neuropathology and behavioral impairment in the triple-transgenic mouse model of Alzheimer's disease.
    Wu X; Kosaraju J; Zhou W; Tam KY
    Neuropharmacology; 2018 Mar; 131():351-363. PubMed ID: 29309769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current Progress on Peroxisome Proliferator-activated Receptor Gamma Agonist as an Emerging Therapeutic Approach for the Treatment of Alzheimer's Disease: An Update.
    Khan MA; Alam Q; Haque A; Ashafaq M; Khan MJ; Ashraf GM; Ahmad M
    Curr Neuropharmacol; 2019; 17(3):232-246. PubMed ID: 30152284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease.
    Uddin MS; Kabir MT; Niaz K; Jeandet P; Clément C; Mathew B; Rauf A; Rengasamy KRR; Sobarzo-Sánchez E; Ashraf GM; Aleya L
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32168835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purinergic receptors as potential therapeutic targets in Alzheimer's disease.
    Woods LT; Ajit D; Camden JM; Erb L; Weisman GA
    Neuropharmacology; 2016 May; 104():169-79. PubMed ID: 26519903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alzheimer disease therapeutics.
    Irizarry MC; Hyman BT
    J Neuropathol Exp Neurol; 2001 Oct; 60(10):923-8. PubMed ID: 11589422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease.
    Pinheiro L; Faustino C
    Curr Alzheimer Res; 2019; 16(5):418-452. PubMed ID: 30907320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations on oxidative stress and therapeutical implications in dementia.
    Durany N; Münch G; Michel T; Riederer P
    Eur Arch Psychiatry Clin Neurosci; 1999; 249 Suppl 3():68-73. PubMed ID: 10654103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer's disease.
    Takahashi RH; Nagao T; Gouras GK
    Pathol Int; 2017 Apr; 67(4):185-193. PubMed ID: 28261941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why Is Research on Amyloid-β Failing to Give New Drugs for Alzheimer's Disease?
    Doig AJ; Del Castillo-Frias MP; Berthoumieu O; Tarus B; Nasica-Labouze J; Sterpone F; Nguyen PH; Hooper NM; Faller P; Derreumaux P
    ACS Chem Neurosci; 2017 Jul; 8(7):1435-1437. PubMed ID: 28586203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insight into the role of metformin in Alzheimer's disease.
    Sanati M; Aminyavari S; Afshari AR; Sahebkar A
    Life Sci; 2022 Feb; 291():120299. PubMed ID: 34999113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of WAVE accumulation in Abeta/APP pathology-dependent tangle modification in Alzheimer's disease.
    Takata K; Kitamura Y; Nakata Y; Matsuoka Y; Tomimoto H; Taniguchi T; Shimohama S
    Am J Pathol; 2009 Jul; 175(1):17-24. PubMed ID: 19497998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.