BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21607891)

  • 21. Identification of capillary blood pressure levels at which capillary collapse is likely in a tissue subjected to large compressive and shear deformations.
    Shilo M; Gefen A
    Comput Methods Biomech Biomed Engin; 2012; 15(1):59-71. PubMed ID: 21181574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments.
    Cristofolini L; Schileo E; Juszczyk M; Taddei F; Martelli S; Viceconti M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2725-63. PubMed ID: 20439271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Finite element analysis of the mechanical property of the resistance to compressing of the coronary stent].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1008-12. PubMed ID: 17121342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesh development for a finite element model of the carotid artery.
    Gayzik FS; Tan JC; Duma SM; Stitzel JD
    Biomed Sci Instrum; 2006; 42():187-92. PubMed ID: 16817606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of carotid arterial plaque stress for symptomatic and asymptomatic patients.
    Gao H; Long Q; Kumar Das S; Halls J; Graves M; Gillard JH; Li ZY
    J Biomech; 2011 Sep; 44(14):2551-7. PubMed ID: 21824619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models.
    Tan FP; Soloperto G; Bashford S; Wood NB; Thom S; Hughes A; Xu XY
    J Biomech Eng; 2008 Dec; 130(6):061008. PubMed ID: 19045537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational model, and experimental validation.
    Bukač M; Čanić S
    Math Biosci Eng; 2013 Apr; 10(2):295-318. PubMed ID: 23458302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery.
    Boyd J; Buick J; Cosgrove JA; Stansell P
    Phys Med Biol; 2005 Oct; 50(20):4783-96. PubMed ID: 16204872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deformation measurements and material property estimation of mouse carotid artery using a microstructure-based constitutive model.
    Ning J; Xu S; Wang Y; Lessner SM; Sutton MA; Anderson K; Bischoff JE
    J Biomech Eng; 2010 Dec; 132(12):121010. PubMed ID: 21142324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models.
    Marshall I; Zhao S; Papathanasopoulou P; Hoskins P; Xu Y
    J Biomech; 2004 May; 37(5):679-87. PubMed ID: 15046997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying the mechanical properties of human skin to optimise future microneedle device design.
    Groves RB; Coulman SA; Birchall JC; Evans SL
    Comput Methods Biomech Biomed Engin; 2012; 15(1):73-82. PubMed ID: 21749225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the implementation of a wrinkling, hyperelastic membrane model for skin and other materials.
    Evans SL
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):319-32. PubMed ID: 19199169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example.
    Kiousis DE; Rubinigg SF; Auer M; Holzapfel GA
    J Biomech Eng; 2009 Dec; 131(12):121002. PubMed ID: 20524725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating material parameters of human skin in vivo.
    Kvistedal YA; Nielsen PM
    Biomech Model Mechanobiol; 2009 Feb; 8(1):1-8. PubMed ID: 18040732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postfailure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method.
    Wang X; Zauel RR; Fyhrie DP
    J Biomech; 2008 Aug; 41(12):2654-8. PubMed ID: 18672244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of carotid plaque tissue properties using an experimental-numerical approach.
    Heiland VM; Forsell C; Roy J; Hedin U; Gasser TC
    J Mech Behav Biomed Mater; 2013 Nov; 27():226-38. PubMed ID: 23790614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation.
    Khalil AS; Bouma BE; Kaazempur Mofrad MR
    Cardiovasc Eng; 2006 Sep; 6(3):93-102. PubMed ID: 16967325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strain analysis of maxillary complete denture with three-dimensional finite element method.
    Cheng YY; Cheung WL; Chow TW
    J Prosthet Dent; 2010 May; 103(5):309-18. PubMed ID: 20416415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.