BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 21607951)

  • 21. Theoretical evaluation of supersaturation of amorphous solid dispersion formulations with different drug/polymer combinations using mathematical modeling.
    Hirai D; Tsunematsu H; Kimura SI; Itai S; Fukami T; Iwao Y
    Int J Pharm; 2022 Sep; 625():122110. PubMed ID: 35970282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissolution performance of binary amorphous drug combinations--Impact of a second drug on the maximum achievable supersaturation.
    Trasi NS; Taylor LS
    Int J Pharm; 2015 Dec; 496(2):282-90. PubMed ID: 26456250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating the Correlation between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques.
    Tian B; Tang X; Taylor LS
    Mol Pharm; 2016 Nov; 13(11):3988-4000. PubMed ID: 27700109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water-Resistant Drug-Polymer Interaction Contributes to the Formation of Nano-Species during the Dissolution of Felodipine Amorphous Solid Dispersions.
    Liu L; Chen L; Müllers W; Serno P; Qian F
    Mol Pharm; 2022 Aug; 19(8):2888-2899. PubMed ID: 35759395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture.
    Rumondor AC; Marsac PJ; Stanford LA; Taylor LS
    Mol Pharm; 2009; 6(5):1492-505. PubMed ID: 19634917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physicochemical properties of tadalafil solid dispersions - Impact of polymer on the apparent solubility and dissolution rate of tadalafil.
    Wlodarski K; Sawicki W; Haber K; Knapik J; Wojnarowska Z; Paluch M; Lepek P; Hawelek L; Tajber L
    Eur J Pharm Biopharm; 2015 Aug; 94():106-15. PubMed ID: 25998701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.
    Hirai D; Iwao Y; Kimura SI; Noguchi S; Itai S
    Int J Pharm; 2017 Apr; 522(1-2):58-65. PubMed ID: 28235625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions.
    Rumondor AC; Stanford LA; Taylor LS
    Pharm Res; 2009 Dec; 26(12):2599-606. PubMed ID: 19806435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and
    Baghel S; Cathcart H; O'Reilly NJ
    Int J Pharm; 2018 Jan; 536(1):414-425. PubMed ID: 29183857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels.
    Schver GCRM; Lee PI
    Mol Pharm; 2018 May; 15(5):2017-2026. PubMed ID: 29601723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization of Amorphous Drugs by Polymers: The Role of Overlap Concentration (
    Sahoo A; Suryanarayanan R; Siegel RA
    Mol Pharm; 2020 Nov; 17(11):4401-4406. PubMed ID: 32975418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the behavior of amorphous pharmaceutical systems during dissolution.
    Alonzo DE; Zhang GG; Zhou D; Gao Y; Taylor LS
    Pharm Res; 2010 Apr; 27(4):608-18. PubMed ID: 20151181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wetting Kinetics: an Alternative Approach Towards Understanding the Enhanced Dissolution Rate for Amorphous Solid Dispersion of a Poorly Soluble Drug.
    Verma S; Rudraraju VS
    AAPS PharmSciTech; 2015 Oct; 16(5):1079-90. PubMed ID: 25672820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of induction methods for supersaturation: Amorphous dissolution versus solvent shift.
    Plum J; Bavnhøj CG; Eliasen JN; Rades T; Müllertz A
    Eur J Pharm Biopharm; 2020 Jul; 152():35-43. PubMed ID: 32376371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formulation of fast disintegrating tablets of ternary solid dispersions consisting of TPGS 1000 and HPMC 2910 or PVPVA 64 to improve the dissolution of the anti-HIV drug UC 781.
    Goddeeris C; Willems T; Van den Mooter G
    Eur J Pharm Sci; 2008 Aug; 34(4-5):293-302. PubMed ID: 18602800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of ternary solid dispersions of itraconazole, PEG 6000, and HPMC 2910 E5.
    Janssens S; de Armas HN; Roberts CJ; Van den Mooter G
    J Pharm Sci; 2008 Jun; 97(6):2110-20. PubMed ID: 17847067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives.
    Xie T; Taylor LS
    Mol Pharm; 2016 Mar; 13(3):873-84. PubMed ID: 26791934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Phase Transformations for Amorphous Solid Dispersions of a Weakly Basic Drug upon Dissolution in Biorelevant Media.
    Elkhabaz A; Sarkar S; Simpson GJ; Taylor LS
    Pharm Res; 2019 Oct; 36(12):174. PubMed ID: 31667638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring supersaturation from amorphous solid dispersions.
    Li N; Taylor LS
    J Control Release; 2018 Jun; 279():114-125. PubMed ID: 29654798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation in Supersaturation and Phase Behavior of Ezetimibe Amorphous Solid Dispersions upon Dissolution in Different Biorelevant Media.
    Elkhabaz A; Sarkar S; Dinh JK; Simpson GJ; Taylor LS
    Mol Pharm; 2018 Jan; 15(1):193-206. PubMed ID: 29161509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.