BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21608103)

  • 21. Microbial metabolism. Part 7 : Curcumin.
    Herath W; Ferreira D; Khan IA
    Nat Prod Res; 2007 May; 21(5):444-50. PubMed ID: 17487616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells.
    Sahu A; Kasoju N; Bora U
    Biomacromolecules; 2008 Oct; 9(10):2905-12. PubMed ID: 18785706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthetic derivatives of curcumin and their activity against Leishmania amazonensis.
    Gomes Dde C; Alegrio LV; de Lima ME; Leon LL; Araújo CA
    Arzneimittelforschung; 2002; 52(2):120-4. PubMed ID: 11878200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of curcumin with phosphatidylcholine: A spectrofluorometric study.
    Began G; Sudharshan E; Udaya Sankar K; Appu Rao AG
    J Agric Food Chem; 1999 Dec; 47(12):4992-7. PubMed ID: 10606563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the fluorescence of luminol in a silver nanoparticles complex.
    Voicescu M; Ionescu S
    J Fluoresc; 2013 May; 23(3):569-74. PubMed ID: 23463296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR study of the solution structure of curcumin.
    Payton F; Sandusky P; Alworth WL
    J Nat Prod; 2007 Feb; 70(2):143-6. PubMed ID: 17315954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes.
    Kamshad M; Jahanshah Talab M; Beigoli S; Sharifirad A; Chamani J
    J Biomol Struct Dyn; 2019 May; 37(8):2030-2040. PubMed ID: 29757090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation mechanism of silver nanoparticle 1D microstructures and their hierarchical assembly into 3D superstructures.
    Suber L; Plunkett WR
    Nanoscale; 2010 Jan; 2(1):128-33. PubMed ID: 20648374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of silver nanoparticles on 2,3-bis(chloromethyl)anthracene-1,4,9,10-tetraone.
    Umadevi M; Sridevi NA; Sharmila AS; Rajkumar BJ; Mary MB; Vanelle P; Terme T; Khoumeri O
    J Fluoresc; 2010 Jan; 20(1):153-61. PubMed ID: 19705260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of carbon nanotubes with curcumin: Effect of temperature and pH on simultaneous static and dynamic fluorescence quenching of curcumin using carbon nanotubes.
    Youssef L; Patra D
    Luminescence; 2020 Aug; 35(5):659-666. PubMed ID: 31943729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast dynamics of the excited states of curcumin in solution.
    Ghosh R; Mondal JA; Palit DK
    J Phys Chem B; 2010 Sep; 114(37):12129-43. PubMed ID: 20806946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mixed ligand copper(II) complexes of phenanthroline/bipyridyl and curcumin diketimines as DNA intercalators and their electrochemical behavior under Nafion and clay modified electrodes.
    Annaraj J; Srinivasan S; Ponvel KM; Athappan P
    J Inorg Biochem; 2005 Mar; 99(3):669-76. PubMed ID: 15708787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembled G4-DNA-silver nanoparticle structures.
    Lubitz I; Kotlyar A
    Bioconjug Chem; 2011 Mar; 22(3):482-7. PubMed ID: 21319752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface modification of anatase nanoparticles with fused ring salicylate-type ligands (3-hydroxy-2-naphthoic acids): a combined DFT and experimental study of optical properties.
    Savić TD; Šaponjić ZV; Čomor MI; Nedeljković JM; Dramićanin MD; Nikolić MG; Veljković DŽ; Zarić SD; Janković IA
    Nanoscale; 2013 Aug; 5(16):7601-12. PubMed ID: 23842592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anti-oxidant activities of curcumin and related enones.
    Weber WM; Hunsaker LA; Abcouwer SF; Deck LM; Vander Jagt DL
    Bioorg Med Chem; 2005 Jun; 13(11):3811-20. PubMed ID: 15863007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the interaction of human serum albumin with ciprofloxacin in the presence of silver nanoparticles of three sizes: multispectroscopic and ζ potential investigation.
    Iranfar H; Rajabi O; Salari R; Chamani J
    J Phys Chem B; 2012 Feb; 116(6):1951-64. PubMed ID: 22224861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled deposition of silver nanoparticles in mesoporous single- or multilayer thin films: from tuned pore filling to selective spatial location of nanometric objects.
    Fuertes MC; Marchena M; Marchi MC; Wolosiuk A; Soler-Illia GJ
    Small; 2009 Feb; 5(2):272-80. PubMed ID: 19115355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fluorescence quenching study of the interaction of Suwannee River fulvic acid with iron oxide nanoparticles.
    Manciulea A; Baker A; Lead JR
    Chemosphere; 2009 Aug; 76(8):1023-7. PubMed ID: 19477482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excited-state dynamics of bis-dehydroxycurcumin carboxylic acid, a water-soluble derivative of the photosensitizer curcumin.
    Nardo L; Maspero A; Selva M; Bondani M; Palmisano G; Ferrari E; Saladini M
    J Phys Chem A; 2012 Sep; 116(37):9321-30. PubMed ID: 22934679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence quenching of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by silver nanoparticles: size effect.
    Umadevi M; Vanelle P; Terme T; Rajkumar BJ; Ramakrishnan V
    J Fluoresc; 2009 Jan; 19(1):3-10. PubMed ID: 18642066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.