These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 21608414)

  • 1. A nonlinear viscoelastic finite element model of polyethylene.
    Chen PC; Colwell CW; D'Lima DD
    Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive stress relaxation behavior of irradiated ultra-high molecular weight polyethylene at 37 degrees C.
    Waldman SD; Bryant JT
    J Appl Biomater; 1994; 5(4):333-8. PubMed ID: 8580540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the mechanical properties of a new grade of ultra high molecular weight polyethylene and modeling with the viscoplasticity based on overstress.
    Khan F; Yeakle C; Gomaa S
    J Mech Behav Biomed Mater; 2012 Feb; 6():174-80. PubMed ID: 22301187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear stress relaxation of dental ceramics determined from creep behavior.
    DeHoff PH; Anusavice KJ
    Dent Mater; 2004 Oct; 20(8):717-25. PubMed ID: 15302452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nonlinear elastic and viscoelastic passive properties of left ventricular papillary muscle of a guinea pig heart.
    Hassan MA; Hamdi M; Noma A
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):99-109. PubMed ID: 22100084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-relaxation response of human menisci under confined compression conditions.
    Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L
    J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method.
    Liu K; Ovaert TC
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):440-50. PubMed ID: 21316632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cyclic strain on the mechanical behavior of virgin ultra-high molecular weight polyethylene.
    Avanzini A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1242-56. PubMed ID: 21783133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscale and nanoscale surface strain mapping of single asperity wear in ultra high molecular weight polyethylene: Effects of materials, load, and asperity geometry.
    Wernlé JD; Gilbert JL
    J Biomed Mater Res A; 2010 Jun; 93(4):1442-53. PubMed ID: 19927370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical response of polyethylene tibial component using compression loading contact test: experimental and finite element analysis.
    Ketata H; Krichen A; Kharrat M; Dammak M
    Technol Health Care; 2006; 14(6):479-87. PubMed ID: 17148860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic destruction of ultra-high molecular weight polyethylene (UHMWPE) under uniaxial tension.
    Shibata N; Tomita N; Ikeuchi K
    Biomed Mater Eng; 2003; 13(1):47-57. PubMed ID: 12652022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues.
    Li Z; Alonso JE; Kim JE; Davidson JS; Etheridge BS; Eberhardt AW
    Ann Biomed Eng; 2006 Sep; 34(9):1452-62. PubMed ID: 16897423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lipid absorption on wear and compressive properties of unirradiated and highly crosslinked UHMWPE: an in vitro experimental model.
    Greenbaum ES; Burroughs BB; Harris WH; Muratoglu OK
    Biomaterials; 2004 Aug; 25(18):4479-84. PubMed ID: 15046938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical characterization of ultra-high molecular weight polyethylene-hydroxyapatite nanocomposites.
    Crowley J; Chalivendra VB
    Biomed Mater Eng; 2008; 18(3):149-60. PubMed ID: 18725695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic material model for the temporomandibular joint disc derived from dynamic shear tests or strain-relaxation tests.
    Koolstra JH; Tanaka E; Van Eijden TM
    J Biomech; 2007; 40(10):2330-4. PubMed ID: 17141788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.
    Galetz MC; Glatzel U
    J Mech Behav Biomed Mater; 2010 May; 3(4):331-8. PubMed ID: 20346901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.