These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2160843)

  • 1. Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle.
    Irving M; Maylie J; Sizto NL; Chandler WK
    Biophys J; 1990 Apr; 57(4):717-21. PubMed ID: 2160843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of fixed and mobile buffers in the kinetics of proton movement.
    Junge W; McLaughlin S
    Biochim Biophys Acta; 1987 Jan; 890(1):1-5. PubMed ID: 3026469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental generation and computational modeling of intracellular pH gradients in cardiac myocytes.
    Swietach P; Leem CH; Spitzer KW; Vaughan-Jones RD
    Biophys J; 2005 Apr; 88(4):3018-37. PubMed ID: 15653720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the buffer capacity and permeability constant for protons in chromatophores from Rhodobacter capsulatus.
    Turina MP; Venturoli G; Melandri BA
    Eur J Biochem; 1990 Aug; 192(1):39-47. PubMed ID: 2169415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of myoglobin diffusivity in the myoplasm of frog skeletal muscle fibres.
    Baylor SM; Pape PC
    J Physiol; 1988 Dec; 406():247-75. PubMed ID: 3267094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoplasmic hydrogen ion diffusion coefficient.
    al-Baldawi NF; Abercrombie RF
    Biophys J; 1992 Jun; 61(6):1470-9. PubMed ID: 1617134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic electric fields and proton diffusion in immobilized protein membranes. Effects of electrolytes and buffers.
    Zabusky NJ; Deem GS
    Biophys J; 1979 Jan; 25(1):1-15. PubMed ID: 233570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of calcium diffusion, binding and membrane transport in the sarcomere of frog skeletal muscle.
    Hollý M; Poledna J
    Gen Physiol Biophys; 1989 Dec; 8(6):539-53. PubMed ID: 2533126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of Ca2+ movements within the sarcomere of fast-twitch mouse fibers stimulated by action potentials.
    Baylor SM; Hollingworth S
    J Gen Physiol; 2007 Sep; 130(3):283-302. PubMed ID: 17724162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of force production that explains the lag between crossbridge attachment and force after electrical stimulation of striated muscle fibers.
    Bagni MA; Cecchi G; Schoenberg M
    Biophys J; 1988 Dec; 54(6):1105-14. PubMed ID: 3233267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations.
    Wagner J; Keizer J
    Biophys J; 1994 Jul; 67(1):447-56. PubMed ID: 7919018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorbance signals from resting frog skeletal muscle fibers injected with the pH indicator dye, phenol red.
    Baylor SM; Hollingworth S
    J Gen Physiol; 1990 Sep; 96(3):449-71. PubMed ID: 2230708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibrium distribution of ions in a muscle fiber.
    Maughan DW; Godt RE
    Biophys J; 1989 Oct; 56(4):717-22. PubMed ID: 2819235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial aspects of intracellular pH regulation in heart muscle.
    Vaughan-Jones RD; Spitzer KW; Swietach P
    Prog Biophys Mol Biol; 2006; 90(1-3):207-24. PubMed ID: 16125756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue.
    Cairns SP; Chin ER; Renaud JM
    J Appl Physiol (1985); 2007 Jul; 103(1):359-68. PubMed ID: 17412789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton diffusion along biological membranes.
    Medvedev ES; Stuchebrukhov AA
    J Phys Condens Matter; 2011 Jun; 23(23):234103. PubMed ID: 21613715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stiffness and force in activated frog skeletal muscle fibers.
    Cecchi G; Griffiths PJ; Taylor S
    Biophys J; 1986 Feb; 49(2):437-51. PubMed ID: 3955178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinetics relating calcium and force in skeletal muscle.
    Stein RB; Bobet J; Oğuztöreli MN; Fryer M
    Biophys J; 1988 Oct; 54(4):705-17. PubMed ID: 3224152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of calcium release from the sarcoplasmic reticulum into the myoplasm of frog cut muscle fibers.
    Chandler WK; Hirota A; Jong DS; Pape PC
    Jpn J Physiol; 1993; 43 Suppl 1():S77-81. PubMed ID: 8271519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of adrenaline, calcium, and ouabain on the resting potential of frog muscle: interpretation based on the theory of allosteric control of cooperative interactions among surface anionic sites.
    Ling GN; Baxter JD; Leitman MI
    Physiol Chem Phys Med NMR; 1984; 16(5):405-23. PubMed ID: 6531404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.