These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 21609027)

  • 1. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy.
    Van de Broek B; Devoogdt N; D'Hollander A; Gijs HL; Jans K; Lagae L; Muyldermans S; Maes G; Borghs G
    ACS Nano; 2011 Jun; 5(6):4319-28. PubMed ID: 21609027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging.
    Kirui DK; Rey DA; Batt CA
    Nanotechnology; 2010 Mar; 21(10):105105. PubMed ID: 20154383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy.
    Nam J; Won N; Jin H; Chung H; Kim S
    J Am Chem Soc; 2009 Sep; 131(38):13639-45. PubMed ID: 19772360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles.
    El-Sayed IH; Huang X; El-Sayed MA
    Cancer Lett; 2006 Jul; 239(1):129-35. PubMed ID: 16198049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy.
    Boca SC; Potara M; Gabudean AM; Juhem A; Baldeck PL; Astilean S
    Cancer Lett; 2011 Dec; 311(2):131-40. PubMed ID: 21840122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted cancer therapy by immunoconjugated gold-gold sulfide nanoparticles using Protein G as a cofactor.
    Sun X; Zhang G; Patel D; Stephens D; Gobin AM
    Ann Biomed Eng; 2012 Oct; 40(10):2131-9. PubMed ID: 22532323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced imaging and accelerated photothermalysis of A549 human lung cancer cells by gold nanospheres.
    Liu X; Lloyd MC; Fedorenko IV; Bapat P; Zhukov T; Huo Q
    Nanomedicine (Lond); 2008 Oct; 3(5):617-26. PubMed ID: 18817466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells.
    Raji V; Kumar J; Rejiya CS; Vibin M; Shenoi VN; Abraham A
    Exp Cell Res; 2011 Aug; 317(14):2052-8. PubMed ID: 21565190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures.
    Hu KW; Liu TM; Chung KY; Huang KS; Hsieh CT; Sun CK; Yeh CS
    J Am Chem Soc; 2009 Oct; 131(40):14186-7. PubMed ID: 19772320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging.
    Choi J; Yang J; Bang D; Park J; Suh JS; Huh YM; Haam S
    Small; 2012 Mar; 8(5):746-53. PubMed ID: 22271594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EphrinA I-targeted nanoshells for photothermal ablation of prostate cancer cells.
    Gobin AM; Moon JJ; West JL
    Int J Nanomedicine; 2008; 3(3):351-8. PubMed ID: 18990944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized polymeric nanoparticles loaded with indocyanine green as theranostic materials for targeted molecular near infrared fluorescence imaging and photothermal destruction of ovarian cancer cells.
    Bahmani B; Guerrero Y; Bacon D; Kundra V; Vullev VI; Anvari B
    Lasers Surg Med; 2014 Sep; 46(7):582-92. PubMed ID: 24961210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy.
    Huang X; Qian W; El-Sayed IH; El-Sayed MA
    Lasers Surg Med; 2007 Oct; 39(9):747-53. PubMed ID: 17960762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy.
    Pasparakis G
    Small; 2013 Dec; 9(24):4130-4. PubMed ID: 23813944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable nanostructures as photothermal theranostic agents.
    Young JK; Figueroa ER; Drezek RA
    Ann Biomed Eng; 2012 Feb; 40(2):438-59. PubMed ID: 22134466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-Poly(amino acid) Nanocore-Shell Mediated Synthesis of Branched Gold Nanostructures for Computed Tomographic Imaging and Photothermal Therapy of Cancer.
    Sasidharan S; Bahadur D; Srivastava R
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):15889-903. PubMed ID: 27243100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.