These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2160918)

  • 21. Preparation and characterization of a pentaammineruthenium(III) derivative of horse heart ferricytochrome c.
    Yocom KM; Shelton JB; Shelton JR; Schroeder WA; Worosila G; Isied SS; Bordignon E; Gray HB
    Proc Natl Acad Sci U S A; 1982 Nov; 79(22):7052-5. PubMed ID: 6294670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational studies of equilibrium structures in fragments of horse heart cytochrome c.
    Toniolo C; Fontana A; Scoffone E
    Eur J Biochem; 1975 Jan; 50(2):367-74. PubMed ID: 165078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crosslinking of cytochrome c and cytochrome b5 with a water-soluble carbodiimide. Reaction conditions, product analysis and critique of the technique.
    Mauk MR; Mauk AG
    Eur J Biochem; 1989 Dec; 186(3):473-86. PubMed ID: 2558010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Limited proteolysis of cytochrome c in trifluoroethanol.
    Fontana A; Zambonin M; De Filippis V; Bosco M; Polverino de Laureto P
    FEBS Lett; 1995 Apr; 362(3):266-70. PubMed ID: 7729510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A functioning complex between tryptic fragments of cytochrome c. A route to the production of semisynthetic analogues.
    Harris DE; Offord RE
    Biochem J; 1977 Jan; 161(1):21-5. PubMed ID: 192193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme-assisted semisynthesis of polypeptide active esters and their use.
    Rose K; Herrero C; Proudfoot AE; Offord RE; Wallace CJ
    Biochem J; 1988 Jan; 249(1):83-8. PubMed ID: 2829852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Axial ligand replacement in horse heart cytochrome c by semisynthesis.
    Raphael AL; Gray HB
    Proteins; 1989; 6(3):338-40. PubMed ID: 2560194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification of hydrophilic and hydrophobic peptide fragments on a single reversed phase high performance liquid chromatographic column.
    McKern NM; Edskes HK; Shukla DD
    Biomed Chromatogr; 1993; 7(1):15-9. PubMed ID: 8381689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing protein engineering capabilities by combining mutagenesis and semisynthesis.
    Wallace CJ; Guillemette JG; Hibiya Y; Smith M
    J Biol Chem; 1991 Nov; 266(32):21355-7. PubMed ID: 1657960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of heme octapeptide (microperoxidase-8; MP-8) formation studied by high-pressure liquid chromatography (HPLC) monitoring of the peptic and tryptic hydrolysis of horse heart cytochrome-c.
    Adams PA; Byfield MP; Goold RD; Thumser AE
    J Inorg Biochem; 1989 Sep; 37(1):55-9. PubMed ID: 2552013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solid-phase synthesis of sauvagine-(17-40).
    Santangelo F; Montecucchi PC; Gozzini L; Henschen A
    Int J Pept Protein Res; 1983 Sep; 22(3):348-54. PubMed ID: 6605317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The semisynthesis of analogues of cytochrome c. Modifications of arginine residues 38 and 91.
    Wallace CJ; Rose K
    Biochem J; 1983 Dec; 215(3):651-8. PubMed ID: 6318729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution three-dimensional structure of horse heart cytochrome c.
    Bushnell GW; Louie GV; Brayer GD
    J Mol Biol; 1990 Jul; 214(2):585-95. PubMed ID: 2166170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modification of horse heart cytochrome c with trans-2-hexenal.
    Zídek L; Dolezel P; Chmelík J; Baker AG; Novotny M
    Chem Res Toxicol; 1997 Jun; 10(6):702-10. PubMed ID: 9208178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Presentation of a horse cytochrome c peptide by multiple H-2b class I major histocompatibility complex (MHC) molecules to C57BL/6- and bm1-derived cytotoxic T lymphocytes: presence of a single MHC anchor residue may confer efficient peptide-specific CTL recognition.
    Sheil JM; Schell TD; Shepherd SE; Klimo GF; Kioschos JM; Paterson Y
    Eur J Immunol; 1994 Sep; 24(9):2141-9. PubMed ID: 7522163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein engineering of cytochrome c by semisynthesis: substitutions at glutamic acid 66.
    Wallace CJ; Corthésy BE
    Protein Eng; 1986; 1(1):23-7. PubMed ID: 2907133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and characterization of singly modified (carboxyferrocenyl)cytochrome c derivatives.
    Gorren AC; Chan ML; Crouse BR; Scott RA
    Bioconjug Chem; 1992; 3(4):291-4. PubMed ID: 1327167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specificity of rabbit antisera for peptide 81-104 of horse cytochrome c is dominated by C-terminal residues.
    Wang KM; Reichlin M
    Mol Immunol; 1982 May; 19(5):729-36. PubMed ID: 6287244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion of the terminal sequences from cytochromes c.
    Bryant C; Stellwagen E
    J Biol Chem; 1985 Jan; 260(1):332-6. PubMed ID: 2981207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of a partially automated solid-phase peptide synthesis apparatus to the synthesis of a protected peptide fragment of cytochrome c.
    Kirby TW; Warme PK
    Anal Biochem; 1978 Apr; 85(2):367-76. PubMed ID: 206164
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.