BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21609183)

  • 1. Uniaxial cyclic strain drives assembly and differentiation of skeletal myocytes.
    Pennisi CP; Olesen CG; de Zee M; Rasmussen J; Zachar V
    Tissue Eng Part A; 2011 Oct; 17(19-20):2543-50. PubMed ID: 21609183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes.
    Andersen JI; Juhl M; Nielsen T; Emmersen J; Fink T; Zachar V; Pennisi CP
    Biochem Biophys Res Commun; 2014 Jul; 450(2):1083-8. PubMed ID: 24996178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of cyclic strain for accelerated skeletal myogenic differentiation of mouse bone marrow-derived mesenchymal stromal cells with cell alignment.
    Egusa H; Kobayashi M; Matsumoto T; Sasaki J; Uraguchi S; Yatani H
    Tissue Eng Part A; 2013 Mar; 19(5-6):770-82. PubMed ID: 23072369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells.
    Bayati V; Sadeghi Y; Shokrgozar MA; Haghighipour N; Azadmanesh K; Amanzadeh A; Azari S
    Tissue Cell; 2011 Dec; 43(6):359-66. PubMed ID: 21872289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Culture of skeletal muscle cells in unprecedented proximity to a gold surface.
    Coletti D; Scaramuzzo FA; Montemiglio LC; Pristerà A; Teodori L; Adamo S; Barteri M
    J Biomed Mater Res A; 2009 Nov; 91(2):370-7. PubMed ID: 18980225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells.
    Park JS; Chu JS; Cheng C; Chen F; Chen D; Li S
    Biotechnol Bioeng; 2004 Nov; 88(3):359-68. PubMed ID: 15486942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes.
    Somers SM; Zhang NY; Morrissette-McAlmon JBF; Tran K; Mao HQ; Grayson WL
    Acta Biomater; 2019 Aug; 94():232-242. PubMed ID: 31212110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP.
    Araya R; Riquelme MA; Brandan E; Sáez JC
    Brain Res Brain Res Rev; 2004 Dec; 47(1-3):174-88. PubMed ID: 15572171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characterization of proliferation and differentiation of trout satellite cells.
    Gabillard JC; Sabin N; Paboeuf G
    Cell Tissue Res; 2010 Dec; 342(3):471-7. PubMed ID: 21086139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning the differentiation of C2C12 skeletal myoblasts.
    Bajaj P; Reddy B; Millet L; Wei C; Zorlutuna P; Bao G; Bashir R
    Integr Biol (Camb); 2011 Sep; 3(9):897-909. PubMed ID: 21842084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures.
    Das M; Gregory CA; Molnar P; Riedel LM; Wilson K; Hickman JJ
    Biomaterials; 2006 Aug; 27(24):4374-80. PubMed ID: 16647113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies.
    Tourovskaia A; Figueroa-Masot X; Folch A
    Lab Chip; 2005 Jan; 5(1):14-9. PubMed ID: 15616734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain.
    Ahmed WW; Wolfram T; Goldyn AM; Bruellhoff K; Rioja BA; Möller M; Spatz JP; Saif TA; Groll J; Kemkemer R
    Biomaterials; 2010 Jan; 31(2):250-8. PubMed ID: 19783042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The prelamin A pre-peptide induces cardiac and skeletal myoblast differentiation.
    Brodsky GL; Bowersox JA; Fitzgerald-Miller L; Miller LA; Maclean KN
    Biochem Biophys Res Commun; 2007 May; 356(4):872-9. PubMed ID: 17389141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with peripheral nuclei and adult fast myosin expression.
    Cooper ST; Maxwell AL; Kizana E; Ghoddusi M; Hardeman EC; Alexander IE; Allen DG; North KN
    Cell Motil Cytoskeleton; 2004 Jul; 58(3):200-11. PubMed ID: 15146538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nordihydroguaiaretic acid (NDGA) blocks the differentiation of C2C12 myoblast cells.
    Ito H; Ueda H; Iwamoto I; Inaguma Y; Takizawa T; Asano T; Kato K
    J Cell Physiol; 2005 Mar; 202(3):874-9. PubMed ID: 15389564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phase limited inhibition of MyoD expression on the terminal differentiation of bovine myoblasts: no alteration of Myf5 or myogenin expression.
    Muroya S; Nakajima I; Oe M; Chikuni K
    Dev Growth Differ; 2005 Sep; 47(7):483-92. PubMed ID: 16179075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletal muscle.
    Cheema U; Brown R; Mudera V; Yang SY; McGrouther G; Goldspink G
    J Cell Physiol; 2005 Jan; 202(1):67-75. PubMed ID: 15389530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain.
    Heher P; Maleiner B; Prüller J; Teuschl AH; Kollmitzer J; Monforte X; Wolbank S; Redl H; Rünzler D; Fuchs C
    Acta Biomater; 2015 Sep; 24():251-65. PubMed ID: 26141153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TIEG1 negatively controls the myoblast pool indispensable for fusion during myogenic differentiation of C2C12 cells.
    Miyake M; Hayashi S; Iwasaki S; Uchida T; Watanabe K; Ohwada S; Aso H; Yamaguchi T
    J Cell Physiol; 2011 Apr; 226(4):1128-36. PubMed ID: 20945337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.