These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 21609192)
1. An in vitro model system to quantify stress generation, compaction, and retraction in engineered heart valve tissue. van Vlimmeren MA; Driessen-Mol A; Oomens CW; Baaijens FP Tissue Eng Part C Methods; 2011 Oct; 17(10):983-91. PubMed ID: 21609192 [TBL] [Abstract][Full Text] [Related]
2. The potential of prolonged tissue culture to reduce stress generation and retraction in engineered heart valve tissues. van Vlimmeren MA; Driessen-Mol A; Oomens CW; Baaijens FP Tissue Eng Part C Methods; 2013 Mar; 19(3):205-15. PubMed ID: 22889149 [TBL] [Abstract][Full Text] [Related]
3. Passive and active contributions to generated force and retraction in heart valve tissue engineering. van Vlimmeren MA; Driessen-Mol A; Oomens CW; Baaijens FP Biomech Model Mechanobiol; 2012 Sep; 11(7):1015-27. PubMed ID: 22246054 [TBL] [Abstract][Full Text] [Related]
4. Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Sodian R; Lueders C; Kraemer L; Kuebler W; Shakibaei M; Reichart B; Daebritz S; Hetzer R Ann Thorac Surg; 2006 Jun; 81(6):2207-16. PubMed ID: 16731156 [TBL] [Abstract][Full Text] [Related]
5. Poly-ε-caprolactone scaffold and reduced in vitro cell culture: beneficial effect on compaction and improved valvular tissue formation. Brugmans MM; Driessen-Mol A; Rubbens MP; Cox MA; Baaijens FP J Tissue Eng Regen Med; 2015 Dec; 9(12):E289-301. PubMed ID: 23677869 [TBL] [Abstract][Full Text] [Related]
8. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. Schmidt D; Dijkman PE; Driessen-Mol A; Stenger R; Mariani C; Puolakka A; Rissanen M; Deichmann T; Odermatt B; Weber B; Emmert MY; Zund G; Baaijens FP; Hoerstrup SP J Am Coll Cardiol; 2010 Aug; 56(6):510-20. PubMed ID: 20670763 [TBL] [Abstract][Full Text] [Related]
9. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in-vitro maturation and in-vivo remodeling. Rabkin E; Hoerstrup SP; Aikawa M; Mayer JE; Schoen FJ J Heart Valve Dis; 2002 May; 11(3):308-14; discussion 314. PubMed ID: 12056720 [TBL] [Abstract][Full Text] [Related]
10. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Engelmayr GC; Rabkin E; Sutherland FW; Schoen FJ; Mayer JE; Sacks MS Biomaterials; 2005 Jan; 26(2):175-87. PubMed ID: 15207464 [TBL] [Abstract][Full Text] [Related]
11. Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Shinoka T; Ma PX; Shum-Tim D; Breuer CK; Cusick RA; Zund G; Langer R; Vacanti JP; Mayer JE Circulation; 1996 Nov; 94(9 Suppl):II164-8. PubMed ID: 8901739 [TBL] [Abstract][Full Text] [Related]
12. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering. Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917 [TBL] [Abstract][Full Text] [Related]
13. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Flanagan TC; Cornelissen C; Koch S; Tschoeke B; Sachweh JS; Schmitz-Rode T; Jockenhoevel S Biomaterials; 2007 Aug; 28(23):3388-97. PubMed ID: 17467792 [TBL] [Abstract][Full Text] [Related]
14. Comparative study of cellular and extracellular matrix composition of native and tissue engineered heart valves. Schenke-Layland K; Riemann I; Opitz F; König K; Halbhuber KJ; Stock UA Matrix Biol; 2004 May; 23(2):113-25. PubMed ID: 15246110 [TBL] [Abstract][Full Text] [Related]
15. Variation in tissue outcome of ovine and human engineered heart valve constructs: relevance for tissue engineering. van Geemen D; Driessen-Mol A; Grootzwagers LG; Soekhradj-Soechit RS; Riem Vis PW; Baaijens FP; Bouten CV Regen Med; 2012 Jan; 7(1):59-70. PubMed ID: 22168498 [TBL] [Abstract][Full Text] [Related]
16. Histological evaluation of tissue-engineered heart valves implanted in the juvenile sheep model: is there a need for in-vitro seeding? Dohmen PM; da Costa F; Yoshi S; Lopes SV; da Souza FP; Vilani R; Wouk AF; da Costa M; Konertz W J Heart Valve Dis; 2006 Nov; 15(6):823-9. PubMed ID: 17152791 [TBL] [Abstract][Full Text] [Related]
17. In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Flanagan TC; Sachweh JS; Frese J; Schnöring H; Gronloh N; Koch S; Tolba RH; Schmitz-Rode T; Jockenhoevel S Tissue Eng Part A; 2009 Oct; 15(10):2965-76. PubMed ID: 19320544 [TBL] [Abstract][Full Text] [Related]
18. Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Fang NT; Xie SZ; Wang SM; Gao HY; Wu CG; Pan LF Chin Med J (Engl); 2007 Apr; 120(8):696-702. PubMed ID: 17517187 [TBL] [Abstract][Full Text] [Related]