BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21609293)

  • 1. Lower oxidation of a high molecular weight glucose polymer vs. glucose during cycling.
    Rowlands DS; Clarke J
    Appl Physiol Nutr Metab; 2011 Apr; 36(2):298-306. PubMed ID: 21609293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance.
    Rowlands DS; Thorburn MS; Thorp RM; Broadbent S; Shi X
    J Appl Physiol (1985); 2008 Jun; 104(6):1709-19. PubMed ID: 18369092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose polymer molecular weight does not affect exogenous carbohydrate oxidation.
    Rowlands DS; Wallis GA; Shaw C; Jentjens RL; Jeukendrup AE
    Med Sci Sports Exerc; 2005 Sep; 37(9):1510-6. PubMed ID: 16177602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No effect of protein coingestion on exogenous glucose oxidation during exercise.
    Rowlands DS; Wadsworth DP
    Med Sci Sports Exerc; 2012 Apr; 44(4):701-8. PubMed ID: 21946154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance.
    O'Brien WJ; Rowlands DS
    Am J Physiol Gastrointest Liver Physiol; 2011 Jan; 300(1):G181-9. PubMed ID: 21071509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of combined ingestion of maltodextrins and fructose during exercise.
    Wallis GA; Rowlands DS; Shaw C; Jentjens RL; Jeukendrup AE
    Med Sci Sports Exerc; 2005 Mar; 37(3):426-32. PubMed ID: 15741841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High rates of exogenous carbohydrate oxidation from starch ingested during prolonged exercise.
    Hawley JA; Dennis SC; Laidler BJ; Bosch AN; Noakes TD; Brouns F
    J Appl Physiol (1985); 1991 Nov; 71(5):1801-6. PubMed ID: 1761477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fructose-Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives.
    Rowlands DS; Houltham S; Musa-Veloso K; Brown F; Paulionis L; Bailey D
    Sports Med; 2015 Nov; 45(11):1561-76. PubMed ID: 26373645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preexercise galactose and glucose ingestion on fuel use during exercise.
    O'Hara JP; Carroll S; Cooke CB; Morrison DJ; Preston T; King RF
    Med Sci Sports Exerc; 2012 Oct; 44(10):1958-67. PubMed ID: 22525771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle glycogen oxidation during prolonged exercise measured with oral [13C]glucose: comparison with changes in muscle glycogen content.
    Harvey CR; Frew R; Massicotte D; Péronnet F; Rehrer NJ
    J Appl Physiol (1985); 2007 May; 102(5):1773-9. PubMed ID: 17272412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous carbohydrate oxidation from maltose and glucose ingested during prolonged exercise.
    Hawley JA; Dennis SC; Nowitz A; Brouns F; Noakes TD
    Eur J Appl Physiol Occup Physiol; 1992; 64(6):523-7. PubMed ID: 1618190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuel selection and cycling endurance performance with ingestion of [13C]glucose: evidence for a carbohydrate dose response.
    Smith JW; Zachwieja JJ; Péronnet F; Passe DH; Massicotte D; Lavoie C; Pascoe DD
    J Appl Physiol (1985); 2010 Jun; 108(6):1520-9. PubMed ID: 20299609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose-maltodextrin ratio governs exogenous and other CHO oxidation and performance.
    O'Brien WJ; Stannard SR; Clarke JA; Rowlands DS
    Med Sci Sports Exerc; 2013 Sep; 45(9):1814-24. PubMed ID: 23949097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-exercise gastric emptying of carbohydrate solutions determined using the 13C acetate breath test.
    Leese GP; Bowtell J; Mudambo S; Reynolds N; Thompson J; Srimgeour CM; Rennie MJ
    Eur J Appl Physiol Occup Physiol; 1995; 71(4):306-10. PubMed ID: 8549572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine increases exogenous carbohydrate oxidation during exercise.
    Yeo SE; Jentjens RL; Wallis GA; Jeukendrup AE
    J Appl Physiol (1985); 2005 Sep; 99(3):844-50. PubMed ID: 15831802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of calcium co-ingestion on exogenous glucose oxidation during endurance exercise in healthy men: A pilot study.
    Narang BJ; Wallis GA; Gonzalez JT
    Eur J Sport Sci; 2021 Aug; 21(8):1156-1164. PubMed ID: 32814506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate source utilization during moderate intensity exercise with glucose ingestion in Type 1 diabetic patients.
    Robitaille M; Dubé MC; Weisnagel SJ; Prud'homme D; Massicotte D; Péronnet F; Lavoie C
    J Appl Physiol (1985); 2007 Jul; 103(1):119-24. PubMed ID: 17431081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of a glucose polymer during exercise: comparison with glucose and fructose.
    Massicotte D; Péronnet F; Brisson G; Bakkouch K; Hillaire-Marcel C
    J Appl Physiol (1985); 1989 Jan; 66(1):179-83. PubMed ID: 2645262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic response to carbohydrate ingestion during exercise in males and females.
    Wallis GA; Dawson R; Achten J; Webber J; Jeukendrup AE
    Am J Physiol Endocrinol Metab; 2006 Apr; 290(4):E708-15. PubMed ID: 16278245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pre-exercise sucralose ingestion on carbohydrate oxidation during exercise.
    Stellingwerff T; Godin JP; Beaumont M; Tavenard A; Grathwohl D; van Bladeren PJ; Kapp AF; le Coutre J; Damak S
    Int J Sport Nutr Exerc Metab; 2013 Dec; 23(6):584-92. PubMed ID: 23689036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.