These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 21609343)
1. A plant growth-promoting pseudomonad is closely related to the Pseudomonas syringae complex of plant pathogens. Blakney AJ; Patten CL FEMS Microbiol Ecol; 2011 Sep; 77(3):546-57. PubMed ID: 21609343 [TBL] [Abstract][Full Text] [Related]
2. A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Badel JL; Shimizu R; Oh HS; Collmer A Mol Plant Microbe Interact; 2006 Feb; 19(2):99-111. PubMed ID: 16529372 [TBL] [Abstract][Full Text] [Related]
3. Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities. Lin NC; Abramovitch RB; Kim YJ; Martin GB Appl Environ Microbiol; 2006 Jan; 72(1):702-12. PubMed ID: 16391110 [TBL] [Abstract][Full Text] [Related]
4. Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Keith RC; Keith LMW; Hernández-Guzmán G; Uppalapati SR; Bender CL Microbiology (Reading); 2003 May; 149(Pt 5):1127-1138. PubMed ID: 12724374 [TBL] [Abstract][Full Text] [Related]
5. Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse pseudomonas syringae pathovars to infect tomato. Lin NC; Martin GB Mol Plant Microbe Interact; 2007 Jul; 20(7):806-15. PubMed ID: 17601168 [TBL] [Abstract][Full Text] [Related]
6. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Rico A; Preston GM Mol Plant Microbe Interact; 2008 Feb; 21(2):269-82. PubMed ID: 18184070 [TBL] [Abstract][Full Text] [Related]
7. Contribution of the non-effector members of the HrpL regulon, iaaL and matE, to the virulence of Pseudomonas syringae pv. tomato DC3000 in tomato plants. Castillo-Lizardo MG; Aragón IM; Carvajal V; Matas IM; Pérez-Bueno ML; Gallegos MT; Barón M; Ramos C BMC Microbiol; 2015 Aug; 15():165. PubMed ID: 26285820 [TBL] [Abstract][Full Text] [Related]
9. Housekeeping gene sequencing and multilocus variable-number tandem-repeat analysis to identify subpopulations within Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. tomato that correlate with host specificity. Gironde S; Manceau C Appl Environ Microbiol; 2012 May; 78(9):3266-79. PubMed ID: 22389364 [TBL] [Abstract][Full Text] [Related]
10. Pseudomonas syringae HrpP Is a type III secretion substrate specificity switch domain protein that is translocated into plant cells but functions atypically for a substrate-switching protein. Morello JE; Collmer A J Bacteriol; 2009 May; 191(9):3120-31. PubMed ID: 19270091 [TBL] [Abstract][Full Text] [Related]
11. An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. Lin NC; Martin GB Mol Plant Microbe Interact; 2005 Jan; 18(1):43-51. PubMed ID: 15672817 [TBL] [Abstract][Full Text] [Related]
13. AlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000. Markel E; Stodghill P; Bao Z; Myers CR; Swingle B J Bacteriol; 2016 Sep; 198(17):2330-44. PubMed ID: 27325679 [TBL] [Abstract][Full Text] [Related]
14. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley. Bull CT; Clarke CR; Cai R; Vinatzer BA; Jardini TM; Koike ST Phytopathology; 2011 Jul; 101(7):847-58. PubMed ID: 21323469 [TBL] [Abstract][Full Text] [Related]
15. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors. Wei HL; Collmer A Mol Plant Pathol; 2018 Jul; 19(7):1779-1794. PubMed ID: 29277959 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Feil H; Feil WS; Chain P; Larimer F; DiBartolo G; Copeland A; Lykidis A; Trong S; Nolan M; Goltsman E; Thiel J; Malfatti S; Loper JE; Lapidus A; Detter JC; Land M; Richardson PM; Kyrpides NC; Ivanova N; Lindow SE Proc Natl Acad Sci U S A; 2005 Aug; 102(31):11064-9. PubMed ID: 16043691 [TBL] [Abstract][Full Text] [Related]
17. The Pseudomonas syringae pv. tomato DC3000 type III effector HopF2 has a putative myristoylation site required for its avirulence and virulence functions. Robert-Seilaniantz A; Shan L; Zhou JM; Tang X Mol Plant Microbe Interact; 2006 Feb; 19(2):130-8. PubMed ID: 16529375 [TBL] [Abstract][Full Text] [Related]
18. Reconstructing host range evolution of bacterial plant pathogens using Pseudomonas syringae pv. tomato and its close relatives as a model. Cai R; Yan S; Liu H; Leman S; Vinatzer BA Infect Genet Evol; 2011 Oct; 11(7):1738-51. PubMed ID: 21802528 [TBL] [Abstract][Full Text] [Related]
19. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000. D'Amico K; Filiatrault MJ FEMS Microbiol Lett; 2017 Apr; 364(8):. PubMed ID: 28073812 [TBL] [Abstract][Full Text] [Related]
20. A Pseudomonas syringae diversity survey reveals a differentiated phylotype of the pathovar syringae associated with the mango host and mangotoxin production. Gutiérrez-Barranquero JA; Carrión VJ; Murillo J; Arrebola E; Arnold DL; Cazorla FM; de Vicente A Phytopathology; 2013 Nov; 103(11):1115-29. PubMed ID: 24102210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]