These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 2160947)

  • 1. Detection of the surface-exposed 18-kilodalton binding protein in Chlamydia trachomatis by immunogold staining.
    Gray GJ; Kaul R; Sherburne R; Wenman WM
    J Bacteriol; 1990 Jun; 172(6):3524-8. PubMed ID: 2160947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp.
    Hatch TP; Allan I; Pearce JH
    J Bacteriol; 1984 Jan; 157(1):13-20. PubMed ID: 6690419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunoelectron microscopy of lipopolysaccharide in Chlamydia trachomatis.
    Birkelund S; Lundemose AG; Christiansen G
    Infect Immun; 1989 Oct; 57(10):3250-3. PubMed ID: 2777384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis.
    Hatch TP; Miceli M; Sublett JE
    J Bacteriol; 1986 Feb; 165(2):379-85. PubMed ID: 3944054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia trachomatis Mip-like protein.
    Lundemose AG; Rouch DA; Birkelund S; Christiansen G; Pearce JH
    Mol Microbiol; 1992 Sep; 6(17):2539-48. PubMed ID: 1406289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy.
    Collett BA; Newhall WJ; Jersild RA; Jones RB
    J Gen Microbiol; 1989 Jan; 135(1):85-94. PubMed ID: 2476526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and properties of chlamydial polypeptides that bind eucaryotic cell surface components.
    Hackstadt T
    J Bacteriol; 1986 Jan; 165(1):13-20. PubMed ID: 3941041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes.
    Wenman WM; Meuser RU
    J Bacteriol; 1986 Feb; 165(2):602-7. PubMed ID: 3511037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2.
    Mygind P; Christiansen G; Birkelund S
    J Bacteriol; 1998 Nov; 180(21):5784-7. PubMed ID: 9791135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoelectron microscopic localization of chlamydial lipopolysaccharide (LPS) in McCoy cells inoculated with Chlamydia trachomatis.
    Hearn SA; McNabb GL
    J Histochem Cytochem; 1991 Aug; 39(8):1067-75. PubMed ID: 1649854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunoassay for detecting Chlamydia trachomatis major outer membrane protein.
    Caldwell HD; Schachter J
    J Clin Microbiol; 1983 Sep; 18(3):539-45. PubMed ID: 6355147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural study of Chlamydia trachomatis surface antigens by immunogold staining with monoclonal antibodies.
    Kuo CC; Chi EY
    Infect Immun; 1987 May; 55(5):1324-8. PubMed ID: 2437035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression, processing, and localization of PmpD of Chlamydia trachomatis Serovar L2 during the chlamydial developmental cycle.
    Kiselev AO; Stamm WE; Yates JR; Lampe MF
    PLoS One; 2007 Jun; 2(6):e568. PubMed ID: 17593967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis.
    Zhang YX; Stewart S; Joseph T; Taylor HR; Caldwell HD
    J Immunol; 1987 Jan; 138(2):575-81. PubMed ID: 3540122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis.
    Newhall WJ
    Infect Immun; 1987 Jan; 55(1):162-8. PubMed ID: 3793227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells.
    Birkelund S; Johnsen H; Christiansen G
    Infect Immun; 1994 Nov; 62(11):4900-8. PubMed ID: 7523300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis.
    Hatch TP; Miceli M; Silverman JA
    J Bacteriol; 1985 Jun; 162(3):938-42. PubMed ID: 3997784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Class specific immunoglobulin response to individual polypeptides of Chlamydia trachomatis, elementary bodies, and reticulate bodies in patients with chlamydial infection.
    Cevenini R; Rumpianesi F; Donati M; Moroni A; Sambri V; La Placa M
    J Clin Pathol; 1986 Dec; 39(12):1313-6. PubMed ID: 3805317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia trachomatis contains a protein similar to the Legionella pneumophila mip gene product.
    Lundemose AG; Birkelund S; Fey SJ; Larsen PM; Christiansen G
    Mol Microbiol; 1991 Jan; 5(1):109-15. PubMed ID: 2013997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of a surface-exposed B-cell epitope to the variable sequent 3 of the major outer-membrane protein of Chlamydia trachomatis.
    Pal S; Cheng X; Peterson EM; de la Maza LM
    J Gen Microbiol; 1993 Jul; 139(7):1565-70. PubMed ID: 7690394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.