These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2160971)

  • 41. Assembly and characterization of five-arm and six-arm DNA branched junctions.
    Wang YL; Mueller JE; Kemper B; Seeman NC
    Biochemistry; 1991 Jun; 30(23):5667-74. PubMed ID: 1645997
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro characterization of repair synthesis initiated by T4 endonuclease V on a synthetic DNA substrate.
    Sibghat-Ullah ; Sancar A
    Indian J Biochem Biophys; 1992 Jun; 29(3):227-30. PubMed ID: 1512008
    [TBL] [Abstract][Full Text] [Related]  

  • 43. T4 endonuclease V exists in solution as a monomer and binds to target sites as a monomer.
    Latham KA; Rajendran S; Carmical JR; Lee JC; Lloyd RS
    Biochim Biophys Acta; 1996 Feb; 1292(2):324-34. PubMed ID: 8597580
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Initiation of heteroduplex-loop repair by T4-encoded endonuclease VII in vitro.
    Kleff S; Kemper B
    EMBO J; 1988 May; 7(5):1527-35. PubMed ID: 3409872
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HPV oncoprotein E6 is a structure-dependent DNA-binding protein that recognizes four-way junctions.
    Ristriani T; Masson M; Nominé Y; Laurent C; Lefevre JF; Weiss E; Travé G
    J Mol Biol; 2000 Mar; 296(5):1189-203. PubMed ID: 10698626
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Endonuclease VII of phage T4 triggers mismatch correction in vitro.
    Solaro PC; Birkenkamp K; Pfeiffer P; Kemper B
    J Mol Biol; 1993 Apr; 230(3):868-77. PubMed ID: 8478939
    [TBL] [Abstract][Full Text] [Related]  

  • 47. T4 endonuclease VII. Importance of a histidine-aspartate cluster within the zinc-binding domain.
    Giraud-Panis MJ; Lilley DM
    J Biol Chem; 1996 Dec; 271(51):33148-55. PubMed ID: 8955164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of the Fenton reaction by the protein caeruloplasmin and other copper complexes. Assessment of ferroxidase and radical scavenging activities.
    Gutteridge JM
    Chem Biol Interact; 1985 Dec; 56(1):113-20. PubMed ID: 3000633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intron-encoded endonuclease I-TevII binds across the minor groove and induces two distinct conformational changes in its DNA substrate.
    Loizos N; Silva GH; Belfort M
    J Mol Biol; 1996 Jan; 255(3):412-24. PubMed ID: 8568886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Use of the hydroxyl radical and gel electrophoresis to study DNA structure.
    Shafer GE; Price MA; Tullius TD
    Electrophoresis; 1989; 10(5-6):397-404. PubMed ID: 2504579
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photogeneration of hydroxyl radicals for footprinting.
    Macgregor RB
    Anal Biochem; 1992 Aug; 204(2):324-7. PubMed ID: 1332533
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Localization and characterization of the dimerization domain of holliday structure resolving endonuclease VII of phage T4.
    Birkenbihl RP; Kemper B
    J Mol Biol; 1998 Jul; 280(1):73-83. PubMed ID: 9653032
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Footprinting of EcoRI endonuclease at high pressure.
    Macgregor RB
    Biochim Biophys Acta; 1992 Feb; 1129(3):303-8. PubMed ID: 1311208
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydroxyl radical "footprinting": high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein.
    Tullius TD; Dombroski BA
    Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5469-73. PubMed ID: 3090544
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel DNA N-glycosylase activity of E. coli T4 endonuclease V that excises 4,6-diamino-5-formamidopyrimidine from DNA, a UV-radiation- and hydroxyl radical-induced product of adenine.
    Dizdaroglu M; Zastawny TH; Carmical JR; Lloyd RS
    Mutat Res; 1996 Jan; 362(1):1-8. PubMed ID: 8538641
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resolution of Holliday junctions by RuvC resolvase: cleavage specificity and DNA distortion.
    Bennett RJ; Dunderdale HJ; West SC
    Cell; 1993 Sep; 74(6):1021-31. PubMed ID: 8402879
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The hydroxylation of tryptophan.
    Maskos Z; Rush JD; Koppenol WH
    Arch Biochem Biophys; 1992 Aug; 296(2):514-20. PubMed ID: 1321587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of drug binding to DNA by hydroxyl radical footprinting. Relationship of distamycin binding sites to DNA structure and positioned nucleosomes on 5S RNA genes of Xenopus.
    Churchill ME; Hayes JJ; Tullius TD
    Biochemistry; 1990 Jun; 29(25):6043-50. PubMed ID: 1696501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mapping interactions between the catalytic domain of resolvase and its DNA substrate using cysteine-coupled EDTA-iron.
    Mazzarelli JM; Ermácora MR; Fox RO; Grindley ND
    Biochemistry; 1993 Mar; 32(12):2979-86. PubMed ID: 8384484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.