These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21609729)

  • 1. Depth of focus and visual acuity with primary and secondary spherical aberration.
    Yi F; Iskander DR; Collins M
    Vision Res; 2011 Jul; 51(14):1648-58. PubMed ID: 21609729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the subjective depth-of-focus with combinations of fourth- and sixth-order spherical aberration.
    Benard Y; Lopez-Gil N; Legras R
    Vision Res; 2011 Dec; 51(23-24):2471-7. PubMed ID: 22019797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images.
    Legras R; Benard Y; Lopez-Gil N
    J Cataract Refract Surg; 2012 Mar; 38(3):458-69. PubMed ID: 22340606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in ocular wavefront aberrations and retinal image quality with objective accommodation.
    Li YJ; Choi JA; Kim H; Yu SY; Joo CK
    J Cataract Refract Surg; 2011 May; 37(5):835-41. PubMed ID: 21420826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subjective depth of field in presence of 4th-order and 6th-order Zernike spherical aberration using adaptive optics technology.
    Benard Y; Lopez-Gil N; Legras R
    J Cataract Refract Surg; 2010 Dec; 36(12):2129-38. PubMed ID: 21111317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of residual ocular spherical aberration on objective and subjective quality of vision in pseudophakic eyes.
    Nochez Y; Majzoub S; Pisella PJ
    J Cataract Refract Surg; 2011 Jun; 37(6):1076-81. PubMed ID: 21596250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depth of focus through different intraocular lenses in patients with different corneal profiles using adaptive optics visual simulation.
    Ruiz-Alcocer J; Pérez-Vives C; Madrid-Costa D; García-Lázaro S; Montés-Micó R
    J Refract Surg; 2012 Jun; 28(6):406-12. PubMed ID: 22692522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the depth of focus from wavefront measurements.
    Yi F; Iskander DR; Collins MJ
    J Vis; 2010 Apr; 10(4):3.1-9. PubMed ID: 20465323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefront analysis, contrast sensitivity, and depth of focus after cataract surgery with aspherical intraocular lens implantation.
    Santhiago MR; Netto MV; Barreto J; Gomes BA; Mukai A; Guermandi AP; Kara-Junior N
    Am J Ophthalmol; 2010 Mar; 149(3):383-9.e1-2. PubMed ID: 20035922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations.
    Guo H; Atchison DA; Birt BJ
    Vision Res; 2008 Aug; 48(17):1804-11. PubMed ID: 18597809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spherical aberration and depth of focus in eyes implanted with aspheric and spherical intraocular lenses: a prospective randomized study.
    Rocha KM; Soriano ES; Chamon W; Chalita MR; Nosé W
    Ophthalmology; 2007 Nov; 114(11):2050-4. PubMed ID: 17445897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator.
    Rocha KM; Vabre L; Chateau N; Krueger RR
    J Cataract Refract Surg; 2009 Nov; 35(11):1885-92. PubMed ID: 19878820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of higher-order wavefront aberrations with visual function in pseudophakic eyes.
    Hayashi K; Yoshida M; Hayashi H
    Eye (Lond); 2008 Dec; 22(12):1476-82. PubMed ID: 17603464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of spherical aberration on visual acuity at different contrasts.
    Li J; Xiong Y; Wang N; Li S; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y
    J Cataract Refract Surg; 2009 Aug; 35(8):1389-95. PubMed ID: 19631126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The change of spherical aberration during accommodation and its effect on the accommodation response.
    López-Gil N; Fernández-Sánchez V
    J Vis; 2010 Nov; 10(13):12. PubMed ID: 21075837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a Clinical Aberrometer Using Pyramidal Wavefront Sensing.
    Singh NK; Jaskulski M; Ramasubramanian V; Meyer D; Reed O; Rickert ME; Bradley A; Kollbaum PS
    Optom Vis Sci; 2019 Oct; 96(10):733-744. PubMed ID: 31592956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave aberration of human eyes and new descriptors of image optical quality and visual performance.
    Lombardo M; Lombardo G
    J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of spherical aberration and small-pupil profiles in improving depth of focus for presbyopic corrections.
    Hickenbotham A; Tiruveedhula P; Roorda A
    J Cataract Refract Surg; 2012 Dec; 38(12):2071-9. PubMed ID: 23031641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrast sensitivity function and ocular higher-order wavefront aberrations in normal human eyes.
    Oshika T; Okamoto C; Samejima T; Tokunaga T; Miyata K
    Ophthalmology; 2006 Oct; 113(10):1807-12. PubMed ID: 16876865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of monochromatic aberration on visual acuity using adaptive optics.
    Li S; Xiong Y; Li J; Wang N; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y; He JC
    Optom Vis Sci; 2009 Jul; 86(7):868-74. PubMed ID: 19521271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.