These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 21609829)

  • 1. CYY-1/cyclin Y and CDK-5 differentially regulate synapse elimination and formation for rewiring neural circuits.
    Park M; Watanabe S; Poon VY; Ou CY; Jorgensen EM; Shen K
    Neuron; 2011 May; 70(4):742-57. PubMed ID: 21609829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components.
    Ou CY; Poon VY; Maeder CI; Watanabe S; Lehrman EK; Fu AK; Park M; Fu WY; Jorgensen EM; Ip NY; Shen K
    Cell; 2010 May; 141(5):846-58. PubMed ID: 20510931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans.
    Kurup N; Yan D; Kono K; Jin Y
    PLoS Genet; 2017 Jun; 13(6):e1006844. PubMed ID: 28636662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons.
    Goodwin PR; Sasaki JM; Juo P
    J Neurosci; 2012 Jun; 32(24):8158-72. PubMed ID: 22699897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic remodeling, lessons from
    Cuentas-Condori A; Miller Rd DM
    J Neurogenet; 2020; 34(3-4):307-322. PubMed ID: 32808848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons.
    Miller-Fleming TW; Petersen SC; Manning L; Matthewman C; Gornet M; Beers A; Hori S; Mitani S; Bianchi L; Richmond J; Miller DM
    Elife; 2016 Jul; 5():. PubMed ID: 27403890
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Cherra SJ; Goncharov A; Boassa D; Ellisman M; Jin Y
    J Neurogenet; 2020; 34(3-4):298-306. PubMed ID: 32366143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits.
    Caroni P; Chowdhury A; Lahr M
    Trends Neurosci; 2014 Oct; 37(10):604-14. PubMed ID: 25257207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The presynaptic machinery at the synapse of C. elegans.
    Calahorro F; Izquierdo PG
    Invert Neurosci; 2018 Mar; 18(2):4. PubMed ID: 29532181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synapse formation in developing neural circuits.
    Colón-Ramos DA
    Curr Top Dev Biol; 2009; 87():53-79. PubMed ID: 19427516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic microtubules drive circuit rewiring in the absence of neurite remodeling.
    Kurup N; Yan D; Goncharov A; Jin Y
    Curr Biol; 2015 Jun; 25(12):1594-605. PubMed ID: 26051896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience-dependent structural synaptic plasticity in the mammalian brain.
    Holtmaat A; Svoboda K
    Nat Rev Neurosci; 2009 Sep; 10(9):647-58. PubMed ID: 19693029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of glial cells in synapse elimination.
    Chung WS; Barres BA
    Curr Opin Neurobiol; 2012 Jun; 22(3):438-45. PubMed ID: 22036016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved juxtacrine signal regulates synaptic partner recognition in Caenorhabditis elegans.
    Park J; Knezevich PL; Wung W; O'Hanlon SN; Goyal A; Benedetti KL; Barsi-Rhyne BJ; Raman M; Mock N; Bremer M; Vanhoven MK
    Neural Dev; 2011 Jun; 6():28. PubMed ID: 21663630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans.
    Yeh E; Kawano T; Weimer RM; Bessereau JL; Zhen M
    J Neurosci; 2005 Apr; 25(15):3833-41. PubMed ID: 15829635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of Coordinated Presynaptic and Postsynaptic Maturation Underlies the Defects in Hippocampal Synapse Stability and Plasticity in Abl2/Arg-Deficient Mice.
    Xiao X; Levy AD; Rosenberg BJ; Higley MJ; Koleske AJ
    J Neurosci; 2016 Jun; 36(25):6778-91. PubMed ID: 27335408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and spatial analysis of C. elegans SYG-1 and SYG-2, orthologs of the Neph/nephrin cell adhesion module directing selective synaptogenesis.
    Wanner N; Noutsou F; Baumeister R; Walz G; Huber TB; Neumann-Haefelin E
    PLoS One; 2011; 6(8):e23598. PubMed ID: 21858180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic rewiring for topographic mapping and receptive field development.
    Bamford SA; Murray AF; Willshaw DJ
    Neural Netw; 2010 May; 23(4):517-27. PubMed ID: 20176460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RSY-1 is a local inhibitor of presynaptic assembly in C. elegans.
    Patel MR; Shen K
    Science; 2009 Mar; 323(5920):1500-3. PubMed ID: 19286562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic synaptic plasticity: from single synapses to neural circuits.
    Vitureira N; Letellier M; Goda Y
    Curr Opin Neurobiol; 2012 Jun; 22(3):516-21. PubMed ID: 21983330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.