These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 21609956)
1. Compensatory signals associated with the activation of human GC 5' splice sites. Kralovicova J; Hwang G; Asplund AC; Churbanov A; Smith CI; Vorechovsky I Nucleic Acids Res; 2011 Sep; 39(16):7077-91. PubMed ID: 21609956 [TBL] [Abstract][Full Text] [Related]
2. Regulation of a strong F9 cryptic 5'ss by intrinsic elements and by combination of tailored U1snRNAs with antisense oligonucleotides. Balestra D; Barbon E; Scalet D; Cavallari N; Perrone D; Zanibellato S; Bernardi F; Pinotti M Hum Mol Genet; 2015 Sep; 24(17):4809-16. PubMed ID: 26063760 [TBL] [Abstract][Full Text] [Related]
3. Profiling of cis- and trans-acting factors supporting noncanonical splice site activation. Erkelenz S; Poschmann G; Ptok J; Müller L; Schaal H RNA Biol; 2021 Jan; 18(1):118-130. PubMed ID: 32693676 [TBL] [Abstract][Full Text] [Related]
4. Ranking noncanonical 5' splice site usage by genome-wide RNA-seq analysis and splicing reporter assays. Erkelenz S; Theiss S; Kaisers W; Ptok J; Walotka L; Müller L; Hillebrand F; Brillen AL; Sladek M; Schaal H Genome Res; 2018 Dec; 28(12):1826-1840. PubMed ID: 30355602 [TBL] [Abstract][Full Text] [Related]
5. Pick one, but be quick: 5' splice sites and the problems of too many choices. Roca X; Krainer AR; Eperon IC Genes Dev; 2013 Jan; 27(2):129-44. PubMed ID: 23348838 [TBL] [Abstract][Full Text] [Related]
6. Aberrant 5' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Buratti E; Chivers M; Královicová J; Romano M; Baralle M; Krainer AR; Vorechovsky I Nucleic Acids Res; 2007; 35(13):4250-63. PubMed ID: 17576681 [TBL] [Abstract][Full Text] [Related]
7. First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts. Lin JH; Tang XY; Boulling A; Zou WB; Masson E; Fichou Y; Raud L; Le Tertre M; Deng SJ; Berlivet I; Ka C; Mort M; Hayden M; Leman R; Houdayer C; Le Gac G; Cooper DN; Li ZS; Férec C; Liao Z; Chen JM Hum Mutat; 2019 Oct; 40(10):1856-1873. PubMed ID: 31131953 [TBL] [Abstract][Full Text] [Related]
8. Determinants of the inherent strength of human 5' splice sites. Roca X; Sachidanandam R; Krainer AR RNA; 2005 May; 11(5):683-98. PubMed ID: 15840817 [TBL] [Abstract][Full Text] [Related]
10. Suppression of 5' splice-sites through multiple exonic motifs by hnRNP L. Loh TJ; Choi N; Moon H; Jang HN; Liu Y; Zhou J; Zheng X; Shen H Biochim Biophys Acta Gene Regul Mech; 2017 Mar; 1860(3):363-373. PubMed ID: 28119102 [TBL] [Abstract][Full Text] [Related]
11. Intrinsic differences between authentic and cryptic 5' splice sites. Roca X; Sachidanandam R; Krainer AR Nucleic Acids Res; 2003 Nov; 31(21):6321-33. PubMed ID: 14576320 [TBL] [Abstract][Full Text] [Related]
12. Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression. Exline CM; Feng Z; Stoltzfus CM J Virol; 2008 Apr; 82(8):3921-31. PubMed ID: 18272582 [TBL] [Abstract][Full Text] [Related]
13. High-throughput analysis revealed mutations' diverging effects on Souček P; Réblová K; Kramárek M; Radová L; Grymová T; Hujová P; Kováčová T; Lexa M; Grodecká L; Freiberger T RNA Biol; 2019 Oct; 16(10):1364-1376. PubMed ID: 31213135 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the splice sites in GT-AG and GC-AG introns in higher eukaryotes using full-length cDNAs. Kitamura-Abe S; Itoh H; Washio T; Tsutsumi A; Tomita M J Bioinform Comput Biol; 2004 Jun; 2(2):309-31. PubMed ID: 15297984 [TBL] [Abstract][Full Text] [Related]
15. Splicing proofreading at 5' splice sites by ATPase Prp28p. Yang F; Wang XY; Zhang ZM; Pu J; Fan YJ; Zhou J; Query CC; Xu YZ Nucleic Acids Res; 2013 Apr; 41(8):4660-70. PubMed ID: 23462954 [TBL] [Abstract][Full Text] [Related]
16. The pivotal roles of TIA proteins in 5' splice-site selection of alu exons and across evolution. Gal-Mark N; Schwartz S; Ram O; Eyras E; Ast G PLoS Genet; 2009 Nov; 5(11):e1000717. PubMed ID: 19911040 [TBL] [Abstract][Full Text] [Related]
17. Recognition of the 5' splice site by the spliceosome. Konarska MM Acta Biochim Pol; 1998; 45(4):869-81. PubMed ID: 10397335 [TBL] [Abstract][Full Text] [Related]
18. Splicing analysis of STAT3 tandem donor suggests non-canonical binding registers for U1 and U6 snRNAs. Kramárek M; Souček P; Réblová K; Grodecká LK; Freiberger T Nucleic Acids Res; 2024 Jun; 52(10):5959-5974. PubMed ID: 38426935 [TBL] [Abstract][Full Text] [Related]
19. A suboptimal 5' splice site downstream of HIV-1 splice site A1 is required for unspliced viral mRNA accumulation and efficient virus replication. Madsen JM; Stoltzfus CM Retrovirology; 2006 Feb; 3():10. PubMed ID: 16457729 [TBL] [Abstract][Full Text] [Related]
20. Regulation of Vif mRNA splicing by human immunodeficiency virus type 1 requires 5' splice site D2 and an exonic splicing enhancer to counteract cellular restriction factor APOBEC3G. Mandal D; Exline CM; Feng Z; Stoltzfus CM J Virol; 2009 Jun; 83(12):6067-78. PubMed ID: 19357165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]