BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 21610034)

  • 1. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development.
    Sharma T; Ettensohn CA
    Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo.
    Sharma T; Ettensohn CA
    Development; 2010 Apr; 137(7):1149-57. PubMed ID: 20181745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres.
    Revilla-i-Domingo R; Minokawa T; Davidson EH
    Dev Biol; 2004 Oct; 274(2):438-51. PubMed ID: 15385170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genomic regulatory control of skeletal morphogenesis in the sea urchin.
    Rafiq K; Cheers MS; Ettensohn CA
    Development; 2012 Feb; 139(3):579-90. PubMed ID: 22190640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network.
    Rho HK; McClay DR
    Development; 2011 Mar; 138(5):937-45. PubMed ID: 21303847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
    Duboc V; Lapraz F; Saudemont A; Bessodes N; Mekpoh F; Haillot E; Quirin M; Lepage T
    Development; 2010 Jan; 137(2):223-35. PubMed ID: 20040489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene regulatory network interactions in sea urchin endomesoderm induction.
    Sethi AJ; Angerer RC; Angerer LM
    PLoS Biol; 2009 Feb; 7(2):e1000029. PubMed ID: 19192949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The surprising complexity of the transcriptional regulation of the spdri gene reveals the existence of new linkages inside sea urchin's PMC and Oral Ectoderm Gene Regulatory Networks.
    Mahmud AA; Amore G
    Dev Biol; 2008 Oct; 322(2):425-34. PubMed ID: 18718463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene.
    Martin EL; Consales C; Davidson EH; Arnone MI
    Dev Biol; 2001 Aug; 236(1):46-63. PubMed ID: 11456443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos.
    Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R
    Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network.
    Yuh CH; Dorman ER; Howard ML; Davidson EH
    Dev Biol; 2004 May; 269(2):536-51. PubMed ID: 15110718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.