BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 21610094)

  • 1. Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting.
    Senju Y; Itoh Y; Takano K; Hamada S; Suetsugu S
    J Cell Sci; 2011 Jun; 124(Pt 12):2032-40. PubMed ID: 21610094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible regulation of caveolar endocytosis and flattening by phosphorylation of F-BAR domain protein PACSIN2/Syndapin II.
    Senju Y; Suetsugu S
    Bioarchitecture; 2015; 5(5-6):70-7. PubMed ID: 26745030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of the basic amino-acid residues responsible for tubulation and cellular protrusion by the EFC/F-BAR domain of pacsin2/Syndapin II.
    Shimada A; Takano K; Shirouzu M; Hanawa-Suetsugu K; Terada T; Toyooka K; Umehara T; Yamamoto M; Yokoyama S; Suetsugu S
    FEBS Lett; 2010 Mar; 584(6):1111-8. PubMed ID: 20188097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution analysis of PACSIN2 and EHD2 at caveolae.
    Nishimura T; Suetsugu S
    PLoS One; 2022; 17(7):e0271003. PubMed ID: 35834519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of caveolae through cholesterol-depletion-dependent tubulation mediated by PACSIN2.
    Gusmira A; Takemura K; Lee SY; Inaba T; Hanawa-Suetsugu K; Oono-Yakura K; Yasuhara K; Kitao A; Suetsugu S
    J Cell Sci; 2020 Oct; 133(19):. PubMed ID: 32878944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of PACSIN2 by protein kinase C triggers the removal of caveolae from the plasma membrane.
    Senju Y; Rosenbaum E; Shah C; Hamada-Nakahara S; Itoh Y; Yamamoto K; Hanawa-Suetsugu K; Daumke O; Suetsugu S
    J Cell Sci; 2015 Aug; 128(15):2766-80. PubMed ID: 26092940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration.
    de Kreuk BJ; Nethe M; Fernandez-Borja M; Anthony EC; Hensbergen PJ; Deelder AM; Plomann M; Hordijk PL
    J Cell Sci; 2011 Jul; 124(Pt 14):2375-88. PubMed ID: 21693584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids.
    Cheng ZJ; Singh RD; Marks DL; Pagano RE
    Mol Membr Biol; 2006; 23(1):101-10. PubMed ID: 16611585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins.
    Itoh T; Erdmann KS; Roux A; Habermann B; Werner H; De Camilli P
    Dev Cell; 2005 Dec; 9(6):791-804. PubMed ID: 16326391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Keeping in touch with the membrane; protein- and lipid-mediated confinement of caveolae to the cell surface.
    Hubert M; Larsson E; Lundmark R
    Biochem Soc Trans; 2020 Feb; 48(1):155-163. PubMed ID: 32049332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae.
    Koch D; Westermann M; Kessels MM; Qualmann B
    Histochem Cell Biol; 2012 Aug; 138(2):215-30. PubMed ID: 22718246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of membrane-shaping BAR domain proteins in caveolar invagination: from mechanistic insights to pathophysiological consequences.
    Kessels MM; Qualmann B
    Biochem Soc Trans; 2020 Feb; 48(1):137-146. PubMed ID: 32104881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis.
    Qaddoumi MG; Gukasyan HJ; Davda J; Labhasetwar V; Kim KJ; Lee VH
    Mol Vis; 2003 Oct; 9():559-68. PubMed ID: 14566223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization.
    Morén B; Shah C; Howes MT; Schieber NL; McMahon HT; Parton RG; Daumke O; Lundmark R
    Mol Biol Cell; 2012 Apr; 23(7):1316-29. PubMed ID: 22323287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Albumin endocytosis via megalin in astrocytes is caveola- and Dab-1 dependent and is required for the synthesis of the neurotrophic factor oleic acid.
    Bento-Abreu A; Velasco A; Polo-Hernández E; Lillo C; Kozyraki R; Tabernero A; Medina JM
    J Neurochem; 2009 Oct; 111(1):49-60. PubMed ID: 19656258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caveola-dependent endocytic entry of amphotropic murine leukemia virus.
    Beer C; Andersen DS; Rojek A; Pedersen L
    J Virol; 2005 Aug; 79(16):10776-87. PubMed ID: 16051869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1.
    Echarri A; Muriel O; Pavón DM; Azegrouz H; Escolar F; Terrón MC; Sanchez-Cabo F; Martínez F; Montoya MC; Llorca O; Del Pozo MA
    J Cell Sci; 2012 Jul; 125(Pt 13):3097-113. PubMed ID: 22454521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae.
    Santibanez JF; Blanco FJ; Garrido-Martin EM; Sanz-Rodriguez F; del Pozo MA; Bernabeu C
    Cardiovasc Res; 2008 Mar; 77(4):791-9. PubMed ID: 18065769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caveosomes and endocytosis of lipid rafts.
    Nichols B
    J Cell Sci; 2003 Dec; 116(Pt 23):4707-14. PubMed ID: 14600257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caveolin-1 interacts directly with dynamin-2.
    Yao Q; Chen J; Cao H; Orth JD; McCaffery JM; Stan RV; McNiven MA
    J Mol Biol; 2005 Apr; 348(2):491-501. PubMed ID: 15811383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.