These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
56 related articles for article (PubMed ID: 21610299)
1. Telemetric in vivo measurement of compressive forces during consolidation in a rabbit model. Floerkemeier T; Aljuneidi W; Reifenrath J; Angrisani N; Rittershaus D; Gottschalk D; Besdo S; Meyer-Lindenberg A; Windhagen H; Thorey F Technol Health Care; 2011; 19(3):173-83. PubMed ID: 21610299 [TBL] [Abstract][Full Text] [Related]
2. The effect of transforming growth factor beta1 (TGF-beta1) on the regenerate bone in distraction osteogenesis. Ozkan K; Eralp L; Kocaoglu M; Ahishali B; Bilgic B; Mutlu Z; Turker M; Ozkan FU; Sahin K; Guven M Growth Factors; 2007 Apr; 25(2):101-7. PubMed ID: 17891595 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional load measurements in an external fixator. Seide K; Weinrich N; Wenzl ME; Wolter D; Jürgens C J Biomech; 2004 Sep; 37(9):1361-9. PubMed ID: 15275843 [TBL] [Abstract][Full Text] [Related]
4. A single-channel telemetric intramedullary nail for in vivo measurement of fracture healing. Wilson DJ; Morgan RL; Hesselden KL; Dodd JR; Janna SW; Fagan MJ J Orthop Trauma; 2009; 23(10):702-9. PubMed ID: 19858978 [TBL] [Abstract][Full Text] [Related]
5. Bone regeneration and fracture healing. Experience with distraction osteogenesis model. Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639 [TBL] [Abstract][Full Text] [Related]
6. The influence of cyclic compression and distraction on the healing of experimental tibial fractures. Hente R; Füchtmeier B; Schlegel U; Ernstberger A; Perren SM J Orthop Res; 2004 Jul; 22(4):709-15. PubMed ID: 15183425 [TBL] [Abstract][Full Text] [Related]
7. Monitoring in vivo load transmission through an external fixator. Grasa J; Gómez-Benito MJ; González-Torres LA; Asiaín D; Quero F; García-Aznar JM Ann Biomed Eng; 2010 Mar; 38(3):605-12. PubMed ID: 20052616 [TBL] [Abstract][Full Text] [Related]
8. Forces involved in lower limb lengthening: an in vivo biomechanical study. Lauterburg MT; Exner GU; Jacob HA J Orthop Res; 2006 Sep; 24(9):1815-22. PubMed ID: 16865711 [TBL] [Abstract][Full Text] [Related]
9. [Tractive force measurement in bone transport--an in vivo investigation in humans]. Baumgart R; Kuhn V; Hinterwimmer S; Krammer M; Mutschler W Biomed Tech (Berl); 2004 Sep; 49(9):248-56. PubMed ID: 15493133 [TBL] [Abstract][Full Text] [Related]
10. Effect of the fixator stiffness on the young regenerate bone after bone transport: computational approach. Reina-Romo E; Gómez-Benito MJ; Domínguez J; Niemeyer F; Wehner T; Simon U; Claes LE J Biomech; 2011 Mar; 44(5):917-23. PubMed ID: 21168137 [TBL] [Abstract][Full Text] [Related]
11. Mandibular distraction osteogenesis: a rabbit model using a novel experimental design. Al-Sebaei MO; Gagari E; Papageorge M J Oral Maxillofac Surg; 2005 May; 63(5):664-72. PubMed ID: 15883942 [TBL] [Abstract][Full Text] [Related]
12. Comparison of two systems for tibial external fixation in rabbits. Meffert RH; Tis JE; Lounici S; Rogers JS; Inoue N; Chao EY Lab Anim Sci; 1999 Dec; 49(6):650-4. PubMed ID: 10638502 [TBL] [Abstract][Full Text] [Related]
13. Zoledronic acid prevents osteopenia and increases bone strength in a rabbit model of distraction osteogenesis. Little DG; Smith NC; Williams PR; Briody JN; Bilston LE; Smith EJ; Gardiner EM; Cowell CT J Bone Miner Res; 2003 Jul; 18(7):1300-7. PubMed ID: 12854841 [TBL] [Abstract][Full Text] [Related]
14. Local application of VEGF compensates callus deficiency after acute soft tissue trauma--results using a limb-shortening distraction procedure in rabbit tibia. Ochman S; Frey S; Raschke MJ; Deventer JN; Meffert RH J Orthop Res; 2011 Jul; 29(7):1093-8. PubMed ID: 21284032 [TBL] [Abstract][Full Text] [Related]
15. Are bone turnover markers capable of predicting callus consolidation during bone healing? Klein P; Bail HJ; Schell H; Michel R; Amthauer H; Bragulla H; Duda GN Calcif Tissue Int; 2004 Jul; 75(1):40-9. PubMed ID: 15148561 [TBL] [Abstract][Full Text] [Related]
16. Augmentation of bone healing by specific frequency and amplitude compressive strains. Shadmehr A; Esteki A; Oliaie GR; Torkaman G; Sabbaghian A Orthopedics; 2009 Mar; 32(3):173. PubMed ID: 19309060 [TBL] [Abstract][Full Text] [Related]
17. Distraction osteogenesis of the femur using conventional monolateral external fixator. Sangkaew C Arch Orthop Trauma Surg; 2008 Sep; 128(9):889-99. PubMed ID: 17874249 [TBL] [Abstract][Full Text] [Related]
18. Possible problems of moulding the regenerate in mandibular distraction osteogenesis -- experimental aspects in a canine model. Kunz C; Adolphs N; Buescher P; Hammer B; Rahn B J Craniomaxillofac Surg; 2005 Dec; 33(6):377-85. PubMed ID: 16253512 [TBL] [Abstract][Full Text] [Related]
19. A simple mechanism for measuring and adjusting distraction forces during maxillary advancement. Suzuki EY; Suzuki B J Oral Maxillofac Surg; 2009 Oct; 67(10):2245-53. PubMed ID: 19761920 [TBL] [Abstract][Full Text] [Related]
20. [Bone fracture and the healing mechanisms. The mechanical stress for fracture healing in view of distraction osteogenesis]. Yukata K; Takahashi M; Yasui N Clin Calcium; 2009 May; 19(5):641-6. PubMed ID: 19398830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]