These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 21611152)
1. Rotavirus rearranged genomic RNA segments are preferentially packaged into viruses despite not conferring selective growth advantage to viruses. Troupin C; Schnuriger A; Duponchel S; Deback C; Schnepf N; Dehee A; Garbarg-Chenon A PLoS One; 2011; 6(5):e20080. PubMed ID: 21611152 [TBL] [Abstract][Full Text] [Related]
2. Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses. Troupin C; Dehée A; Schnuriger A; Vende P; Poncet D; Garbarg-Chenon A J Virol; 2010 Jul; 84(13):6711-9. PubMed ID: 20427539 [TBL] [Abstract][Full Text] [Related]
3. Transfection of exogenous rotavirus rearranged RNA segments in cells infected with a WT rotavirus results in subsequent gene rearrangements. Duponchel S; Troupin C; Vu LT; Schnuriger A; Trugnan G; Garbarg-Chenon A J Gen Virol; 2014 Sep; 95(Pt 9):2089-2098. PubMed ID: 24906979 [TBL] [Abstract][Full Text] [Related]
4. Reassortment of human rotaviruses carrying rearranged genomes with bovine rotavirus. Allen AM; Desselberger U J Gen Virol; 1985 Dec; 66 ( Pt 12)():2703-14. PubMed ID: 2999313 [TBL] [Abstract][Full Text] [Related]
5. A major rearrangement of the VP6 gene of a strain of rotavirus provides replication advantage. Xu Z; Tuo W; Clark KI; Woode GN Vet Microbiol; 1996 Oct; 52(3-4):235-47. PubMed ID: 8972049 [TBL] [Abstract][Full Text] [Related]
6. Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics. Navarro A; Trask SD; Patton JT J Virol; 2013 Jun; 87(11):6211-20. PubMed ID: 23536662 [TBL] [Abstract][Full Text] [Related]
7. Rotaviruses: Extraction and Isolation of RNA, Reassortant Strains, and NSP4 Protein. Yakshe KA; Franklin ZD; Ball JM Curr Protoc Microbiol; 2015 May; 37():15C.6.1-44. PubMed ID: 26344218 [TBL] [Abstract][Full Text] [Related]
8. Recombinant Rotaviruses Rescued by Reverse Genetics Reveal the Role of NSP5 Hyperphosphorylation in the Assembly of Viral Factories. Papa G; Venditti L; Arnoldi F; Schraner EM; Potgieter C; Borodavka A; Eichwald C; Burrone OR J Virol; 2019 Dec; 94(1):. PubMed ID: 31619556 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a triple-recombinant, reassortant rotavirus strain from the Dominican Republic. Esona MD; Roy S; Rungsrisuriyachai K; Sanchez J; Vasquez L; Gomez V; Rios LA; Bowen MD; Vazquez M J Gen Virol; 2017 Feb; 98(2):134-142. PubMed ID: 27983480 [TBL] [Abstract][Full Text] [Related]
10. Whole genome analyses of African G2, G8, G9, and G12 rotavirus strains using sequence-independent amplification and 454® pyrosequencing. Jere KC; Mlera L; O'Neill HG; Potgieter AC; Page NA; Seheri ML; van Dijk AA J Med Virol; 2011 Nov; 83(11):2018-42. PubMed ID: 21915879 [TBL] [Abstract][Full Text] [Related]
11. Assortment and packaging of the segmented rotavirus genome. McDonald SM; Patton JT Trends Microbiol; 2011 Mar; 19(3):136-44. PubMed ID: 21195621 [TBL] [Abstract][Full Text] [Related]
12. Preferential selection of specific rotavirus gene segments in coinfection and multiple passages with reassortant viruses and their parental strain. Kobayashi N; Taniguchi K; Urasawa T; Urasawa S Res Virol; 1995; 146(5):333-42. PubMed ID: 8578007 [TBL] [Abstract][Full Text] [Related]
13. Whole genome sequence analyses of three African bovine rotaviruses reveal that they emerged through multiple reassortment events between rotaviruses from different mammalian species. Jere KC; Mlera L; O'Neill HG; Peenze I; van Dijk AA Vet Microbiol; 2012 Sep; 159(1-2):245-50. PubMed ID: 22541163 [TBL] [Abstract][Full Text] [Related]
14. Rearrangements of rotavirus genomic segment 11 are generated during acute infection of immunocompetent children and do not occur at random. Schnepf N; Deback C; Dehee A; Gault E; Parez N; Garbarg-Chenon A J Virol; 2008 Apr; 82(7):3689-96. PubMed ID: 18216096 [TBL] [Abstract][Full Text] [Related]
15. Analysis on reassortment of rotavirus NSP1 genes lacking coding region for cysteine-rich zinc finger motif. Okada J; Kobayashi N; Taniguchi K; Urasawa S Arch Virol; 1999; 144(2):345-53. PubMed ID: 10470258 [TBL] [Abstract][Full Text] [Related]
16. Reconciliation of rotavirus temperature-sensitive mutant collections and assignment of reassortment groups D, J, and K to genome segments. Criglar J; Greenberg HB; Estes MK; Ramig RF J Virol; 2011 May; 85(10):5048-60. PubMed ID: 21367894 [TBL] [Abstract][Full Text] [Related]
17. Generation of an Avian-Mammalian Rotavirus Reassortant by Using a Helper Virus-Dependent Reverse Genetics System. Johne R; Reetz J; Kaufer BB; Trojnar E J Virol; 2016 Feb; 90(3):1439-43. PubMed ID: 26581988 [TBL] [Abstract][Full Text] [Related]
18. Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly. Nichols SL; Haller C; Borodavka A; Esstman SM Viruses; 2024 May; 16(6):. PubMed ID: 38932107 [TBL] [Abstract][Full Text] [Related]
19. Molecular and serologic characterization of novel serotype G8 human rotavirus strains detected in Blantyre, Malawi. Cunliffe NA; Gentsch JR; Kirkwood CD; Gondwe JS; Dove W; Nakagomi O; Nakagomi T; Hoshino Y; Bresee JS; Glass RI; Molyneux ME; Hart CA Virology; 2000 Sep; 274(2):309-20. PubMed ID: 10964774 [TBL] [Abstract][Full Text] [Related]
20. Genetic determinants restricting the reassortment of heterologous NSP2 genes into the simian rotavirus SA11 genome. Mingo R; Zhang S; Long CP; LaConte LEW; McDonald SM Sci Rep; 2017 Aug; 7(1):9301. PubMed ID: 28839154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]