These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 21611155)

  • 1. Frontal-to-parietal top-down causal streams along the dorsal attention network exclusively mediate voluntary orienting of attention.
    Ozaki TJ
    PLoS One; 2011; 6(5):e20079. PubMed ID: 21611155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causality analysis defines neural streams of orienting and holding of attention.
    Ozaki TJ; Ogawa S
    Neuroreport; 2009 Oct; 20(15):1371-5. PubMed ID: 19730137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
    Vossel S; Weidner R; Driver J; Friston KJ; Fink GR
    J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study.
    Jiang LW; Qian RB; Fu XM; Zhang D; Peng N; Niu CS; Wang YH
    Epilepsy Behav; 2018 Nov; 88():81-86. PubMed ID: 30243110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top-down versus bottom-up attention differentially modulate frontal-parietal connectivity.
    Bowling JT; Friston KJ; Hopfinger JB
    Hum Brain Mapp; 2020 Mar; 41(4):928-942. PubMed ID: 31692192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal dynamics of attentional orienting and reorienting revealed by fast optical imaging in occipital and parietal cortices.
    Parisi G; Mazzi C; Colombari E; Chiarelli AM; Metzger BA; Marzi CA; Savazzi S
    Neuroimage; 2020 Nov; 222():117244. PubMed ID: 32798674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The causal interaction within attention networks and emotion network: a fMRI study.
    Sicong Liu ; Xianxian Kong ; Zhenlan Jin ; Ling Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2388-91. PubMed ID: 25570470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Causal interactions in attention networks predict behavioral performance.
    Wen X; Yao L; Liu Y; Ding M
    J Neurosci; 2012 Jan; 32(4):1284-92. PubMed ID: 22279213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional hierarchy of the task-positive networks indicates a core control system of top-down regulation in visual attention.
    Zhao P; Yu RS; Liu Y; Liu ZH; Wu X; Li R; Ding MZ; Wen XT
    J Integr Neurosci; 2021 Mar; 20(1):43-53. PubMed ID: 33834690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural correlates of covert orienting of visual spatial attention along vertical and horizontal dimensions.
    Mao L; Zhou B; Zhou W; Han S
    Brain Res; 2007 Mar; 1136(1):142-53. PubMed ID: 17239829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orienting role of the putative human posterior infero-temporal area in visual attention.
    Meng Z; Huang Y; Wang W; Zhou L; Zhou K
    Cortex; 2024 Jun; 175():54-65. PubMed ID: 38704919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disrupted functional connectivity in dorsal and ventral attention networks during attention orienting in autism spectrum disorders.
    Fitzgerald J; Johnson K; Kehoe E; Bokde AL; Garavan H; Gallagher L; McGrath J
    Autism Res; 2015 Apr; 8(2):136-52. PubMed ID: 25428212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial re-orienting of visual attention along the horizontal or the vertical axis.
    Macaluso E; Patria F
    Exp Brain Res; 2007 Jun; 180(1):23-34. PubMed ID: 17262217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Timing and sequence of brain activity in top-down control of visual-spatial attention.
    Grent-'t-Jong T; Woldorff MG
    PLoS Biol; 2007 Jan; 5(1):e12. PubMed ID: 17199410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices.
    Shomstein S; Lee J; Behrmann M
    Exp Brain Res; 2010 Oct; 206(2):197-208. PubMed ID: 20571784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal functional connectivity and effective connectivity between the default mode network and attention networks in patients with alcohol-use disorder.
    Song Z; Chen J; Wen Z; Zhang L
    Acta Radiol; 2021 Feb; 62(2):251-259. PubMed ID: 32423229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parsing the intrinsic networks underlying attention: a resting state study.
    Visintin E; De Panfilis C; Antonucci C; Capecci C; Marchesi C; Sambataro F
    Behav Brain Res; 2015 Feb; 278():315-22. PubMed ID: 25311282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting an individual's dorsal attention network activity from functional connectivity fingerprints.
    Osher DE; Brissenden JA; Somers DC
    J Neurophysiol; 2019 Jul; 122(1):232-240. PubMed ID: 31066602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural correlates of social attention: automatic orienting to social and nonsocial cues.
    Greene DJ; Mooshagian E; Kaplan JT; Zaidel E; Iacoboni M
    Psychol Res; 2009 Jul; 73(4):499-511. PubMed ID: 19350270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.