These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21611188)

  • 1. Transcranial magnetic stimulation reveals attentional feedback to area V1 during serial visual search.
    Dugué L; Marque P; VanRullen R
    PLoS One; 2011; 6(5):e19712. PubMed ID: 21611188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of FEF to Attentional Periodicity during Visual Search: A TMS Study.
    Dugué L; Beck AA; Marque P; VanRullen R
    eNeuro; 2019; 6(3):. PubMed ID: 31175148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posttraining transcranial magnetic stimulation of striate cortex disrupts consolidation early in visual skill learning.
    De Weerd P; Reithler J; van de Ven V; Been M; Jacobs C; Sack AT
    J Neurosci; 2012 Feb; 32(6):1981-8. PubMed ID: 22323712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronavigated transcranial magnetic stimulation suggests that area V2 is necessary for visual awareness.
    Salminen-Vaparanta N; Koivisto M; Noreika V; Vanni S; Revonsuo A
    Neuropsychologia; 2012 Jun; 50(7):1621-7. PubMed ID: 22465860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TMS reveals inhibitory extrastriate cortico-cortical feedback modulation of V1 activity in humans.
    Maniglia M; Trotter Y; Aedo-Jury F
    Brain Struct Funct; 2019 Dec; 224(9):3399-3408. PubMed ID: 31624907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal aspects of visual search studied by transcranial magnetic stimulation.
    Ashbridge E; Walsh V; Cowey A
    Neuropsychologia; 1997 Aug; 35(8):1121-31. PubMed ID: 9256377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions.
    Romei V; Murray MM; Merabet LB; Thut G
    J Neurosci; 2007 Oct; 27(43):11465-72. PubMed ID: 17959789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TMS to V1 spares discrimination of emotive relative to neutral body postures.
    Filmer HL; Monsell S
    Neuropsychologia; 2013 Nov; 51(13):2485-91. PubMed ID: 24071594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceptual learning of line orientation modifies the effects of transcranial magnetic stimulation of visual cortex.
    Neary K; Anand S; Hotson JR
    Exp Brain Res; 2005 Mar; 162(1):23-34. PubMed ID: 15578168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is selective primary visual cortex stimulation achievable with TMS?
    Salminen-Vaparanta N; Noreika V; Revonsuo A; Koivisto M; Vanni S
    Hum Brain Mapp; 2012 Mar; 33(3):652-65. PubMed ID: 21416561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation effect of early visual cortex V1 under different crowding conditions: a transcranial magnetic stimulation study.
    Liu X; Zhang J; Li L
    Neuroreport; 2019 Oct; 30(14):974-979. PubMed ID: 31469722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of lateral and feedback connections in primary visual cortex in the processing of spatiotemporal regularity - a TMS study.
    Roebuck H; Bourke P; Guo K
    Neuroscience; 2014 Mar; 263():231-9. PubMed ID: 24462610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neural signature of phosphene perception.
    Taylor PC; Walsh V; Eimer M
    Hum Brain Mapp; 2010 Sep; 31(9):1408-17. PubMed ID: 20091790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cortical site of visual suppression by transcranial magnetic stimulation.
    Thielscher A; Reichenbach A; Uğurbil K; Uludağ K
    Cereb Cortex; 2010 Feb; 20(2):328-38. PubMed ID: 19465739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extinguishing Exogenous Attention via Transcranial Magnetic Stimulation.
    Fernández A; Carrasco M
    Curr Biol; 2020 Oct; 30(20):4078-4084.e3. PubMed ID: 32795447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contributions of sensory dominance and attentional bias to cross-modal enhancement of visual cortex excitability.
    Romei V; Murray MM; Cappe C; Thut G
    J Cogn Neurosci; 2013 Jul; 25(7):1122-35. PubMed ID: 23384192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interhemispheric transfer of phosphenes generated by occipital versus parietal transcranial magnetic stimulation.
    Marzi CA; Mancini F; Savazzi S
    Exp Brain Res; 2009 Jan; 192(3):431-41. PubMed ID: 18663438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subjective characteristics of TMS-induced phosphenes originating in human V1 and V2.
    Salminen-Vaparanta N; Vanni S; Noreika V; Valiulis V; Móró L; Revonsuo A
    Cereb Cortex; 2014 Oct; 24(10):2751-60. PubMed ID: 23696280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for fast signals and later processing in human V1/V2 and V5/MT+: A TMS study of motion perception.
    Laycock R; Crewther DP; Fitzgerald PB; Crewther SG
    J Neurophysiol; 2007 Sep; 98(3):1253-62. PubMed ID: 17634339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disrupting Short-Term Memory Maintenance in Premotor Cortex Affects Serial Dependence in Visuomotor Integration.
    de Azevedo Neto RM; Bartels A
    J Neurosci; 2021 Nov; 41(45):9392-9402. PubMed ID: 34607968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.