BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 21611646)

  • 1. Determination of Ochratoxin A in apples contaminated with Aspergillus ochraceus by using a microfluidic competitive immunosensor with magnetic nanoparticles.
    Fernández-Baldo MA; Bertolino FA; Fernández G; Messina GA; Sanz MI; Raba J
    Analyst; 2011 Jul; 136(13):2756-62. PubMed ID: 21611646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified magnetic nanoparticles in an electrochemical method for the ochratoxin A determination in Vitis vinifera red grapes tissues.
    Fernández-Baldo MA; Bertolino FA; Messina GA; Sanz MI; Raba J
    Talanta; 2010 Dec; 83(2):651-7. PubMed ID: 21111187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels.
    Wu S; Duan N; Zhu C; Ma X; Wang M; Wang Z
    Biosens Bioelectron; 2011 Dec; 30(1):35-42. PubMed ID: 21930370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Citrinin (CIT) determination in rice samples using a micro fluidic electrochemical immunosensor.
    Arévalo FJ; Granero AM; Fernández H; Raba J; Zón MA
    Talanta; 2011 Jan; 83(3):966-73. PubMed ID: 21147345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive electrochemical immunosensor for ochratoxin A using gold colloid-mediated hapten immobilization.
    Liu XP; Deng YJ; Jin XY; Chen LG; Jiang JH; Shen GL; Yu RQ
    Anal Biochem; 2009 Jun; 389(1):63-8. PubMed ID: 19303858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free impedimetric immunosensor for sensitive detection of ochratoxin A.
    Radi AE; Muñoz-Berbel X; Lates V; Marty JL
    Biosens Bioelectron; 2009 Mar; 24(7):1888-92. PubMed ID: 19013783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive detection of ochratoxin A in wine and cereals using fluorescence-based immunosensing.
    Prieto-Simón B; Karube I; Saiki H
    Food Chem; 2012 Dec; 135(3):1323-9. PubMed ID: 22953861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of nanogold-based lateral flow immunoassay for the detection of ochratoxin A in buffer systems.
    Moon J; Kim G; Lee S
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7245-9. PubMed ID: 24245237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic device based on a screen-printed carbon electrode with electrodeposited gold nanoparticles for the detection of IgG anti-Trypanosoma cruzi antibodies.
    Pereira SV; Bertolino FA; Fernández-Baldo MA; Messina GA; Salinas E; Sanz MI; Raba J
    Analyst; 2011 Nov; 136(22):4745-51. PubMed ID: 21984978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic immunosensor with micromagnetic beads coupled to carbon-based screen-printed electrodes (SPCEs) for determination of Botrytis cinerea in tissue of fruits.
    Fernández-Baldo MA; Messina GA; Sanz MI; Raba J
    J Agric Food Chem; 2010 Nov; 58(21):11201-6. PubMed ID: 20931959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A.
    Adányi N; Levkovets IA; Rodriguez-Gil S; Ronald A; Váradi M; Szendro I
    Biosens Bioelectron; 2007 Jan; 22(6):797-802. PubMed ID: 16600588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ochratoxin A Detection on Antibody- Immobilized on BSA-Functionalized Gold Electrodes.
    Badea M; Floroian L; Restani P; Cobzac SC; Moga M
    PLoS One; 2016; 11(7):e0160021. PubMed ID: 27467684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues.
    Fernández-Baldo MA; Messina GA; Sanz MI; Raba J
    Talanta; 2009 Aug; 79(3):681-6. PubMed ID: 19576430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of ochratoxin A in beer and wine.
    Mateo R; Medina A; Mateo EM; Mateo F; Jiménez M
    Int J Food Microbiol; 2007 Oct; 119(1-2):79-83. PubMed ID: 17716764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1.
    Jin X; Jin X; Chen L; Jiang J; Shen G; Yu R
    Biosens Bioelectron; 2009 Apr; 24(8):2580-5. PubMed ID: 19237278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycoflora and ochratoxin A producing strains of Aspergillus in Algerian wheat.
    Riba A; Mokrane S; Mathieu F; Lebrihi A; Sabaou N
    Int J Food Microbiol; 2008 Feb; 122(1-2):85-92. PubMed ID: 18083262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the post-harvest processing procedure on OTA occurrence in artificially contaminated coffee.
    Suarez-Quiroz M; Gonzalez-Rios O; Barel M; Guyot B; Schorr-Galindo S; Guiraud JP
    Int J Food Microbiol; 2005 Sep; 103(3):339-45. PubMed ID: 16023238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer.
    Bonel L; Vidal JC; Duato P; Castillo JR
    Biosens Bioelectron; 2011 Mar; 26(7):3254-9. PubMed ID: 21256729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra sensitive microfluidic immunosensor for determination of clenbuterol in bovine hair samples using electrodeposited gold nanoparticles and magnetic micro particles as bio-affinity platform.
    Regiart M; Fernández-Baldo MA; Spotorno VG; Bertolino FA; Raba J
    Biosens Bioelectron; 2013 Mar; 41():211-7. PubMed ID: 22975092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid detection of ochratoxin A on membrane by dot immunogold filtration assay.
    Chen W; Jin Y; Liu A; Wang X; Chen F
    J Sci Food Agric; 2016 Jan; 96(2):610-4. PubMed ID: 25678129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.