These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 21611667)

  • 41. On the origin of fluorescence in bacteriophytochrome infrared fluorescent proteins.
    Samma AA; Johnson CK; Song S; Alvarez S; Zimmer M
    J Phys Chem B; 2010 Nov; 114(46):15362-9. PubMed ID: 21047084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Light-induced Changes in the Dimerization Interface of Bacteriophytochromes.
    Takala H; Björling A; Linna M; Westenhoff S; Ihalainen JA
    J Biol Chem; 2015 Jun; 290(26):16383-92. PubMed ID: 25971964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore.
    Stepanenko OV; Stepanenko OV; Shpironok OG; Fonin AV; Kuznetsova IM; Turoverov KK
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31810174
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway.
    Tachibana SR; Tang L; Zhu L; Takeda Y; Fushimi K; Ueda Y; Nakajima T; Kuwasaki Y; Sato M; Narikawa R; Fang C
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065754
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sub-picosecond mid-infrared spectroscopy of phytochrome Agp1 from Agrobacterium tumefaciens.
    Schumann C; Gross R; Michael N; Lamparter T; Diller R
    Chemphyschem; 2007 Aug; 8(11):1657-63. PubMed ID: 17614346
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phytochrome: structural basis for its functions.
    Nagatani A
    Curr Opin Plant Biol; 2010 Oct; 13(5):565-70. PubMed ID: 20801708
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr.
    Zienicke B; Molina I; Glenz R; Singer P; Ehmer D; Escobar FV; Hildebrandt P; Diller R; Lamparter T
    J Biol Chem; 2013 Nov; 288(44):31738-51. PubMed ID: 24036118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Study on the reconstitution in vitro and photochemical activities of phytochrome from the Synechocystis sp. PCC6803].
    Dong YR; Ran Y; Zhao KH; Zhou M
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):238-44. PubMed ID: 15969115
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrafast Photoconversion Dynamics of the Knotless Phytochrome
    Fischer T; van Wilderen LJGW; Gnau P; Bredenbeck J; Essen LO; Wachtveitl J; Slavov C
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639031
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrafast spectroscopy of biological photoreceptors.
    Kennis JT; Groot ML
    Curr Opin Struct Biol; 2007 Oct; 17(5):623-30. PubMed ID: 17959372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proline 68 enhances photoisomerization yield in photoactive yellow protein.
    Rupenyan AB; Vreede J; van Stokkum IH; Hospes M; Kennis JT; Hellingwerf KJ; Groot ML
    J Phys Chem B; 2011 May; 115(20):6668-77. PubMed ID: 21542640
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photoactive yellow protein, bacteriophytochrome, and sensory rhodopsin in purple phototrophic bacteria.
    Kyndt JA; Meyer TE; Cusanovich MA
    Photochem Photobiol Sci; 2004 Jun; 3(6):519-30. PubMed ID: 15170480
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relative ground and excited-state pKa values of phytochromobilin in the photoactivation of phytochrome: a computational study.
    Borg OA; Durbeej B
    J Phys Chem B; 2007 Oct; 111(39):11554-65. PubMed ID: 17845025
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein.
    Auldridge ME; Satyshur KA; Anstrom DM; Forest KT
    J Biol Chem; 2012 Mar; 287(10):7000-9. PubMed ID: 22210774
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NMR determination of pKa values for Asp, Glu, His, and Lys mutants at each variable contiguous enzyme-inhibitor contact position of the turkey ovomucoid third domain.
    Song J; Laskowski M; Qasim MA; Markley JL
    Biochemistry; 2003 Mar; 42(10):2847-56. PubMed ID: 12627950
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of the PHY Domain on the Photoisomerization Step of the Forward P
    Fischer T; Xu Q; Zhao KH; Gärtner W; Slavov C; Wachtveitl J
    Chemistry; 2020 Dec; 26(71):17261-17266. PubMed ID: 32812681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of reverse genetic mutations on the spectral and photochemical behavior of a photoactivatable fluorescent protein PAiRFP1.
    Hassan F; Khan FI; Song H; Lai D; Juan F
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117807. PubMed ID: 31806482
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of Double Covalent Binding of BV in NIR FPs on Their Spectral and Physicochemical Properties.
    Stepanenko OV; Kuznetsova IM; Turoverov KK; Stepanenko OV
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806351
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the role of aromatic side chains in the photoactivation of BLUF domains.
    Gauden M; Grinstead JS; Laan W; van Stokkum IH; Avila-Perez M; Toh KC; Boelens R; Kaptein R; van Grondelle R; Hellingwerf KJ; Kennis JT
    Biochemistry; 2007 Jun; 46(25):7405-15. PubMed ID: 17542622
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling photophysical properties of the bacteriophytochrome-based fluorescent protein IFP1.4.
    Grigorenko BL; Polyakov IV; Nemukhin AV
    J Chem Phys; 2021 Feb; 154(6):065101. PubMed ID: 33588533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.