These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 21611667)
61. Small-angle X-ray scattering reveals the solution structure of a bacteriophytochrome in the catalytically active Pr state. Evans K; Grossmann JG; Fordham-Skelton AP; Papiz MZ J Mol Biol; 2006 Dec; 364(4):655-66. PubMed ID: 17027028 [TBL] [Abstract][Full Text] [Related]
62. Biochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa. Tasler R; Moises T; Frankenberg-Dinkel N FEBS J; 2005 Apr; 272(8):1927-36. PubMed ID: 15819886 [TBL] [Abstract][Full Text] [Related]
63. Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion. Burgie ES; Wang T; Bussell AN; Walker JM; Li H; Vierstra RD J Biol Chem; 2014 Aug; 289(35):24573-87. PubMed ID: 25006244 [TBL] [Abstract][Full Text] [Related]
64. Strong hydrogen bond between glutamic acid 46 and chromophore leads to the intermediate spectral form and excited state proton transfer in the Y42F mutant of the photoreceptor photoactive yellow protein. Joshi CP; Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2009 Oct; 48(42):9980-93. PubMed ID: 19764818 [TBL] [Abstract][Full Text] [Related]
65. Photoconversion mechanism of a green/red photosensory cyanobacteriochrome AnPixJ: time-resolved optical spectroscopy and FTIR analysis of the AnPixJ-GAF2 domain. Fukushima Y; Iwaki M; Narikawa R; Ikeuchi M; Tomita Y; Itoh S Biochemistry; 2011 Jul; 50(29):6328-39. PubMed ID: 21714499 [TBL] [Abstract][Full Text] [Related]
66. Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis. Suzuki T; Yoshimura M; Arai M; Narikawa R J Mol Biol; 2024 Mar; 436(5):168451. PubMed ID: 38246412 [TBL] [Abstract][Full Text] [Related]
67. Biliverdin binds covalently to agrobacterium phytochrome Agp1 via its ring A vinyl side chain. Lamparter T; Michael N; Caspani O; Miyata T; Shirai K; Inomata K J Biol Chem; 2003 Sep; 278(36):33786-92. PubMed ID: 12824166 [TBL] [Abstract][Full Text] [Related]
73. Fully Quantum Chemical Treatment of Chromophore-Protein Interactions in Phytochromes. González R; Mroginski MA J Phys Chem B; 2019 Nov; 123(46):9819-9830. PubMed ID: 31674186 [TBL] [Abstract][Full Text] [Related]
74. Bacterial phytochromes: more than meets the light. Auldridge ME; Forest KT Crit Rev Biochem Mol Biol; 2011 Feb; 46(1):67-88. PubMed ID: 21250783 [TBL] [Abstract][Full Text] [Related]
75. On the mechanism of activation of the BLUF domain of AppA. Laan W; Gauden M; Yeremenko S; van Grondelle R; Kennis JT; Hellingwerf KJ Biochemistry; 2006 Jan; 45(1):51-60. PubMed ID: 16388580 [TBL] [Abstract][Full Text] [Related]
76. The PHY domain is required for conformational stability and spectral integrity of the bacteriophytochrome from Deinococcus radiodurans. Yoon JM; Hahn TR; Cho MH; Jeon JS; Bhoo SH; Kwon YK Biochem Biophys Res Commun; 2008 May; 369(4):1120-4. PubMed ID: 18331835 [TBL] [Abstract][Full Text] [Related]
77. Homologous expression of a bacterial phytochrome. The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore. Quest B; Hübschmann T; Sharda S; Tandeau de Marsac N; Gärtner W FEBS J; 2007 Apr; 274(8):2088-98. PubMed ID: 17388813 [TBL] [Abstract][Full Text] [Related]
78. A phytochrome-like protein AphC triggers the cAMP signaling induced by far-red light in the cyanobacterium Anabaena sp. strain PCC7120. Okamoto S; Kasahara M; Kamiya A; Nakahira Y; Ohmori M Photochem Photobiol; 2004; 80(3):429-33. PubMed ID: 15623325 [TBL] [Abstract][Full Text] [Related]
79. Role of Gln1029 in the photoactivation processes of the LOV2 domain in adiantum phytochrome3. Nozaki D; Iwata T; Ishikawa T; Todo T; Tokutomi S; Kandori H Biochemistry; 2004 Jul; 43(26):8373-9. PubMed ID: 15222749 [TBL] [Abstract][Full Text] [Related]
80. Impact of amino acid substitutions on the behavior of a photoactivatable near infrared fluorescent protein PAiRFP1. Khan FI; Song H; Hassan F; Tian J; Tang L; Lai D; Juan F Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119572. PubMed ID: 33631627 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]