BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21612230)

  • 1. Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films.
    Woo K; Kim Y; Lee B; Kim J; Moon J
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2377-82. PubMed ID: 21612230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet Fabrication of Copper Patterns for Flexible Electronics: Using Paper with Active Precoatings.
    Öhlund T; Schuppert AK; Hummelgård M; Bäckström J; Nilsson HE; Olin H
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18273-82. PubMed ID: 26245645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Printed silver nanowire antennas with low signal loss at high-frequency radio.
    Komoda N; Nogi M; Suganuma K; Kohno K; Akiyama Y; Otsuka K
    Nanoscale; 2012 May; 4(10):3148-53. PubMed ID: 22522460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics.
    Hwang YT; Chung WH; Jang YR; Kim HS
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A self-reducible and alcohol-soluble copper-based metal-organic decomposition ink for printed electronics.
    Shin DH; Woo S; Yem H; Cha M; Cho S; Kang M; Jeong S; Kim Y; Kang K; Piao Y
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3312-9. PubMed ID: 24512011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly conductive copper films prepared by multilayer sintering of nanoparticles synthesized via arc discharge.
    Fu Q; Li W; Kruis FE
    Nanotechnology; 2023 Mar; 34(22):. PubMed ID: 36805345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of low temperature Sn nanoparticles for the fabrication of highly conductive ink.
    Jo YH; Jung I; Choi CS; Kim I; Lee HM
    Nanotechnology; 2011 Jun; 22(22):225701. PubMed ID: 21454937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids.
    Xia Y; Ouyang J
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):474-83. PubMed ID: 20356194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light.
    Chung WY; Lai YC; Yonezawa T; Liao YC
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics.
    Lee Y; Choi JR; Lee KJ; Stott NE; Kim D
    Nanotechnology; 2008 Oct; 19(41):415604. PubMed ID: 21832649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds.
    Kang H; Sowade E; Baumann RR
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1682-7. PubMed ID: 24433059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells.
    Kim C; Lee G; Rhee C; Lee M
    Nanoscale; 2015 Apr; 7(15):6627-35. PubMed ID: 25794325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and low-temperature sintering of silver complex using oximes as a potential reducing agent for solution-processible, highly conductive electrodes.
    Yoo JH; Han DS; Park SB; Chae J; Kim JM; Kwak J
    Nanotechnology; 2014 Nov; 25(46):465706. PubMed ID: 25360800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet-printing of antimony-doped tin oxide (ATO) films for transparent conducting electrodes.
    Lim J; Jeong BY; Yoon HG; Lee SN; Kim J
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1675-8. PubMed ID: 22630027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroless copper plating of inkjet-printed polydopamine nanoparticles: a facile method to fabricate highly conductive patterns at near room temperature.
    Ma S; Liu L; Bromberg V; Singler TJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19494-8. PubMed ID: 25360833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper thick film sintering studies in an environmental scanning electron microscope.
    Link LF; Gerristead WR; Tamhankar S
    Microsc Res Tech; 1993 Aug; 25(5-6):518-22. PubMed ID: 8400447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Performance Metal Oxide Field-Effect Transistors with a Reverse Offset Printed Cu Source/Drain Electrode.
    Han YH; Won JY; Yoo HS; Kim JH; Choi R; Jeong JK
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1156-63. PubMed ID: 26716349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.